精英家教网 > 高中数学 > 题目详情

【题目】函数的一段图象如图所示.

(1)求函数的解析式;

(2)将函数的图象向右平移个单位,得到的图象,求直线

函数的图象在内所有交点的坐标.

【答案】(1);(2).

【解析】【试题分析】(1)依据题设中提供的函数图像,分析探求出函数解析式中的参数的值;(2)借助题设条件建立方程组分析探求:

(1)由图知A=2,T=π,于是ω=2,

y=2sin 2x的图象向左平移,得y=2sin(2xφ)的图象.

于是φ=2·

f(x)=2sin.

(2)依题意得

g(x)=2sin=2sin. 故yg(x)=2sin. 由得sin.

∴2x+2kπ或2x+2kπ(k∈Z),

xkπ或xkπ(k∈Z). ∵x∈(0,π),

xx. ∴交点坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形为正方形,的中点

1求证:平面

2在线段上是否存在一点,使得二面角的大小为?若存在,求出的长;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1当函数在点处的切线方程为,求函数的解析式;

21的条件下,若是函数的零点,且,求的值;

3时,函数有两个零点,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蛋糕店每天制作生日蛋糕若干个,每个生日蛋糕的成本为50元,然后以每个100元的价格出售,如果当天卖不完,剩下的蛋糕作垃圾处理现需决策此蛋糕店每天应该制作几个生日蛋糕,为此搜集并整理了100天生日蛋糕的日需求量单位:个,得到如图所示的柱状图,以100天记录的各需求量的频率作为每天各需求量发生的概率

1若蛋糕店一天制作17个生日蛋糕,

求当天的利润单位:元关于当天需求量单位:个,的函数解析式;

在当天的利润不低于750元的条件下,求当天需求量不低于18个的概率

2若蛋糕店计划一天制作16个或17个生日蛋糕,请你以蛋糕店一天利润的期望值为决定依据,判断应该制作16个是17个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若某产品的直径长与标准值的差的绝对值不超过1mm时,则视为合格品,否则视为不合格品.在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差单位:mm,将所得数据分组,得到如下频率分布表:

[-3,-2

0.10

[-2,-1

8

1,2]

0.50

2,3]

10

3,4]

合计

50

1.00

1将上面表格中缺少的数据填充完整.

2估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间1,3]内的概率.

3现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品.据此估算这批产品中的合格品的件数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线上有一个动点,过点作直线垂直于轴,动点上,且满足为坐标原点),记点的轨迹为.

(I)求曲线的方程;

(II)若直线是曲线的一条切线,当点到直线的距离最短时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在边长为1的等边三角形中,分别是上的点,的中点,交于点沿折起,得到如图2所示的三棱锥,其中.

1求证:平面平面

2上的中点,中点,求异面直线所成角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆和定点,由圆外一点向圆引切线,切点为,且满足

(1)求实数间满足的等量关系;

(2)若以为圆心的圆与圆有公共点,试求圆的半径最小时圆的方程;

(3)当点的位置发生变化,直线是否过定点,如果是,求出定点坐标,如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点,且它的圆心在直线上.

)求圆的方程;

)求圆关于直线对称的圆的方程。

)若点为圆上任意一点,且点,求线段的中点的轨迹方程.

查看答案和解析>>

同步练习册答案