精英家教网 > 高中数学 > 题目详情
若m是5和
16
5
的等比中项,则圆锥曲线
x2
m
+y2=1的离心率是(  )
A、
3
2
B、
5
C、
3
2
5
2
D、
3
2
5
考点:双曲线的简单性质,等比数列,椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:利用等比中项求出m,然后求解圆锥曲线的离心率即可.
解答: 解:∵m是5和
16
5
的等比中项,
∴m2=5×
16
5
=16,
即m=4或m=-4,
当m=4时,圆锥曲线
x2
4
+y2=1为椭圆,
∴a=2,b=1,c=
3

∴e=
c
a
=
3
2

当m=-4时,圆锥曲线-
x2
4
+y2=1为双曲线,
∴a=1,b=2,c=
5

∴e=
c
a
=
5

故选:D.
点评:本题主要考查了等比中项和圆锥曲线的离心率的问题,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若复数z满足
.
z-4
1z
|=0,则z的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系中,已知圆的方程为x2-8xcosθ+y2-6ysinθ+7cos2θ+8=0,在以直角坐标系的原点为极点,x轴正半轴为极轴的极坐标系中,有点A(2,0)
(Ⅰ)求圆心轨迹的普通方程C;
(Ⅱ)若点P在曲线C上,求|PA|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M:(x-3)2+y2=9,过圆心M的直线与抛物线y2=12x和圆M的交点自上而下依次为点A,B,C,D,则
AB
CD
的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

点O和点F分别为椭圆
x2
9
+
y2
8
=1的中心和左焦点,点P为椭圆上的任意一点,则
OF
FP
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{lgan}是等差数列,求证:数列{an}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

在研究关于曲线C:
x4
16
-y2=1的性质过程中,有同学得到了如下结论①曲线C关于原点、x,y轴对称 ②曲线C的渐近线为y=±
x
2
 ③曲线C的两个顶点分别为(-2,0),(2,0)④曲线C上的点到原点的最近距离为2.上述判断正确的编号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

两个等差数列{an}和{bn}的前n项和分别为Sn和Tn,若
Sn
Tn
=
3n-1
n+7
,则
a7
b7
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b3=9,a5+b2=11.
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求数列{
an
bn
}的前n项和Sn

查看答案和解析>>

同步练习册答案