【题目】设函数f(x)=|ex﹣e2a|,若f(x)在区间(﹣1,3﹣a)内的图象上存在两点,在这两点处的切线相互垂直,则实数a的取值范围是 .
【答案】(﹣ , )
【解析】解:当x≥2a时,f(x)=|ex﹣e2a|=ex﹣e2a , 此时为增函数,
当x<2a时,f(x)=|ex﹣e2a|=﹣ex+e2a , 此时为减函数,
即当x=2a时,函数取得最小值0,设两个切点为M(x1 , f(x1)),N((x2 , f(x2)),
由图象知,当两个切线垂直时,必有,x1<2a<x2 ,
即﹣1<2a<3﹣a,得﹣ <a<1,
∵k1k2=f′(x1)f′(x2)= =﹣ =﹣1,
则 =1,即x1+x2=0,
∵﹣1<x1<0,∴0<x2<1,且x2>2a,
∴2a<1,解得a< ,
综上﹣ <a< ,
故答案为:(﹣ , )
求出函数f(x)的表达式,利用数形结合,结合导数的几何意义进行求解即可.
科目:高中数学 来源: 题型:
【题目】《算法统宗》是中国古代数学名著,由明代数学家程大位编著. 《算法统宗》对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,以“竹筒容米”就是其中一首:家有九节竹一茎,为因盛米不均平;下头三节三升九,上梢四节贮三升;唯有中间二节竹,要将米数次第盛;若是先生能算法,也教算得到天明!大意是:用一根9节长的竹子盛米,每节竹筒盛米的容积是不均匀的.下端3节可盛米3.9升,上端4节可盛米3升,要按每节依次盛容积相差同一数量的方式盛米,中间两节可盛米多少升?由以上条件,计算出中间两节的容积为( )
A. 升 B. 升 C. 升 D. 升
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,底面为矩形,侧面为正三角形,且平面 平面, 为中点, .
(Ⅰ)求证:平面平面;
(Ⅱ)若二面角的平面角大小满足,求四棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】光线从点A(-3,4)射出,到x轴上的点B后,被x轴反射到y轴上的点C,又被y轴反射,这时反射光线恰好过点D(-1,6),求光线BC所在直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 .
(1)当a<0时,若x>0,使f(x)≤0成立,求a的取值范围;
(2)令g(x)=f(x)﹣(a+1)x,a∈(1,e],证明:对x1 , x2∈[1,a],恒有|g(x1)﹣g(x2)|<1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=x2lnx,g(x)=ax3﹣x2 .
(1)求函数f(x)的最小值;
(2)若存在x∈(0,+∞),使f(x)>g(x),求实数a的取值范围;
(3)若使方程f(x)﹣g(x)=0在x∈[ ,en](其中e=2.7…为自然对数的底数)上有解的最小a的值为an , 数列{an}的前n项和为Sn , 求证:Sn<3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于( )
A.6
B.7
C.8
D.9
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且Sn=n2+2n,(n∈N*),求:
(1)数列{an}的通项公式an;
(2)若bn=an3n , 求数列{bn}的前n项和 Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com