分析 (Ⅰ)直线l与圆C相交于不同的两点A,B,故圆心到直线l的距离$d=\frac{{|{2k+1-5k}|}}{{\sqrt{{k^2}+1}}}=\frac{{|{1-3k}|}}{{\sqrt{{k^2}+1}}}<\sqrt{5}$,即可求k的取值范围;
(Ⅱ)若弦长|AB|=4,利用勾股定理,求出k,即可求直线l的方程.
解答 解:(Ⅰ)由已知圆C:(x-2)2+(y+1)2=5,知圆心C(2,-1),半径$\sqrt{5}$,----(1分)
设过点P(5,0)且斜率为k的直线l:y=k(x-5),-----------------------------------(2分)
因为直线l与圆C相交于不同的两点A,B,
故圆心到直线l的距离$d=\frac{{|{2k+1-5k}|}}{{\sqrt{{k^2}+1}}}=\frac{{|{1-3k}|}}{{\sqrt{{k^2}+1}}}<\sqrt{5}$---------(5分)
得(2k+1)(k-2)<0,所以,$-\frac{1}{2}<k<2$------------------------------(7分)
(Ⅱ)弦长|AB|=4,得:$5-{(\frac{{|{1-3k}|}}{{\sqrt{{k^2}+1}}})^2}=4$----------------------------------------(8分)
解得:k=0或$k=\frac{3}{4}$y=0或是3x-4y-15=0(10分)
点评 本题考查直线方程,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{4}{3}$ | B. | $\frac{{2\sqrt{3}}}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com