精英家教网 > 高中数学 > 题目详情
已知AB是平面α内的一条线段, AC⊥α, BD⊥AB且和α成30°角, 又AC, BD在平面α同侧, 若AB=4, AC=BD=3, 则CD的长是

[  ]

A.3  B.5  C.7  D.9 

答案:B
解析:

解1: 过D作DE⊥平面α于E, 连结BE, AE.可求出

DE=,  BE=.

∵ BD⊥AB,  ∴  BE⊥AB(三垂线定理).

可求出AE=

∴  CD==5

解2: AB是异面直线AC, BD的公垂线段.

CD==5


提示:

注意AB是AC, BD的公垂线段, AC, BD成60°角. 利用教材中异面直线上两点间距离公式求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知棱长为2的正方体ABCD-A1B1C1D1中,M为AB的中点,P是平面ABCD内的动点,且满足条件PD1=3PM,则动点P在平面ABCD内形成的轨迹是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)自圆O外一点P引切线与圆切于点A,M为PA中点,过M引割线交圆于B,C两点.求证:∠MCP=∠MPB.
(2)在平面直角坐标系xOy中,已知四边形ABCD的四个顶点A(0,1),B(2,1),C(2,3),D(0,2),经矩阵M=
10
k1
表示的变换作用后,四边形ABCD变为四边形A1B1C1D1,问:四边形ABCD与四边形A1B1C1D1的面积是否相等?试证明你的结论.
(3)已知A是曲线ρ=12sinθ上的动点,B是曲线ρ=12cos(θ-
π
6
)
上的动点,试求AB的最大值.
(4)设p是△ABC内的一点,x,y,z是p到三边a,b,c的距离,R是△ABC外接圆的半径,证明
x
+
y
+
z
1
2R
a2+b2+c2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知正方体ABCD-A1B1C1D1的棱长为2,E、F、G分别是AB,BC,B1C1的中点,则下列说法正确的是
①②③⑤
①②③⑤
 (写出所有正确命题的编号).
①P在直线EF上运动时,GP始终与平面AA1C1C平行;
②点Q在直线BC1上运动时,三棱锥A-D1QC的体积不变;
③点M是平面A1B1C1D1上到点!?和.距离相等的点,则点M的轨迹是一条直线;
④以正方体ABCD-A1B1C1D1的任意两个顶点为端点连一条线段,其中与棱AA1异面的有10条;
⑤点P是平面ABCD内的动点,且点P到直线A1D1的距离与点P到点E的距离的平方差为3,则点P的轨迹为拋物线.

查看答案和解析>>

科目:高中数学 来源:江苏同步题 题型:解答题

(附加题)
(1)自圆O外一点P引切线与圆切于点A,M为PA中点,过M引割线交圆于B,C两点.
求证:∠MCP=∠MPB.
(2)在平面直角坐标系xOy中,已知四边形ABCD的四个顶点A(0,1),B(2,1),C(2,3),D(0,2),经矩阵表示的变换作用后,四边形ABCD变为四边形A1B1C1D1,问:四边形ABCD与四边形A1B1C1D1的面积是否相等?试证明你的结论.
(3)已知A是曲线ρ=12sinθ上的动点,B是曲线上的动点,试求AB的最大值.
(4)设p是△ABC内的一点,x,y,z是p到三边a,b,c的距离,R是△ABC外接圆的半径,证明

查看答案和解析>>

同步练习册答案