精英家教网 > 高中数学 > 题目详情
如图,P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0,xy≠0)
上的动点,F1、F2是双曲线的左右焦点,M是∠F1PF2的平分线上一点,且F2M⊥MP.某同学用以下方法研究|OM|:延长F2M交PF1于点N,可知△PNF2为等腰三角形,且M为F2N的中点,得|OM|=
1
2
|NF1|,…,|OM|=a
.类似地:P是椭圆
x2
a2
+
y2
b2
=1(a>b>0,b2+c2=a2,xy≠0)
上的动点,F1、F2是椭圆的左右焦点,M是∠F1PF2的平分线上一点,且F2M⊥MP,则|OM|的取值范围是
(0,c)
(0,c)
分析:类比双曲线中的研究方法,结合椭圆的定义,即可确定|OM|的取值范围.
解答:解:延长F2M交PF1于点N,可知△PNF2为等腰三角形,且M为F2N的中点,得|OM|=
1
2
|NF1|=
1
2
(|PF1|-|PF2|)

∵|PF1|+|PF2|=2a
∴|OM|=a-|PF2|
∵a-c≤|PF2|≤a+c
∵P、F1、F2三点不共线
∴0<a-|PF2|<c
∴0<|OM|<c
故答案为:(0,c).
点评:本题考查类比推理,考查椭圆的定义,考查学生分析解决问题的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知等轴双曲线C的两个焦点F1、F2在直线y=x上,线段F1F2的中点是坐标原点,且双曲线经过点(3,
3
2
).
(1)若已知下列所给的三个方程中有一个是等轴双曲线C的方程:①x2-y2=
27
4
;②xy=9;③xy=
9
2
.请确定哪个是等轴双曲线C的方程,并求出此双曲线的实轴长;
(2)现要在等轴双曲线C上选一处P建一座码头,向A(3,3)、B(9,6)两地转运货物.经测算,从P到A、从P到B修建公路的费用都是每单位长度a万元,则码头应建在何处,才能使修建两条公路的总费用最低?
(3)如图,函数y=
3
3
x+
1
x
的图象也是双曲线,请尝试研究此双曲线的性质,你能得到哪些结论?(本小题将按所得到的双曲线性质的数量和质量酌情给分)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,点P是双曲线C1
x2
a2
-
y2
b2
=1(a>0,b>0)
和圆C2:x2+y2=a2+b2的一个交点,Q是圆C2在x轴下方的一点,且∠F1QP=60o,其中F1、F2是双曲线C1的两个焦点,则双曲线C1的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0),焦点为F1、F2,双曲线G:x2-y2=m(m>0)的顶点是该椭圆的焦点,设P是双曲线G上异于顶点的任一点,直线PF1、PF2与椭圆的交点分别为A、B和C、D,已知三角形ABF2的周长等于8
2
,椭圆四个顶点组成的菱形的面积为8
2

(1)求椭圆E与双曲线G的方程;
(2)设直线PF1、PF2的斜率分别为k1和k2,探求k1和k2的关系;
(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,试求出λ的值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆E:
x2
8
+
y2
4
=1
焦点为F1、F2,双曲线G:x2-y2=4,设P是双曲线G上异于顶点的任一点,直线PF1、PF2与椭圆的交点分别为A、B和C、D.
(1)设直线PF1、PF2的斜率分别为k1和k2,求k1•k2的值;
(2)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,试求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)如图,已知双曲线C1
x2
2
-y2=1
,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1-C2型点”
(1)在正确证明C1的左焦点是“C1-C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1-C2型点”;
(3)求证:圆x2+y2=
1
2
内的点都不是“C1-C2型点”

查看答案和解析>>

同步练习册答案