精英家教网 > 高中数学 > 题目详情
已知离心率为的椭圆过点为坐标原点,平行于的直线交椭圆于不同的两点

(1)求椭圆的方程。
(2)证明:若直线的斜率分别为,求证:+=0。
(Ⅰ).(Ⅱ)见解析。

试题分析:(1)由于先由椭圆C的离心率和椭圆过点M(2,1),列出方程组,再由方程组求出a,b,由此能求出椭圆方程
(2)联立直线与椭圆的方程,结合韦达定理得到根与系数的关系,那么再结合斜率公式得到证明。
解:(Ⅰ)设椭圆的方程为:
由题意得: ∴ 椭圆方程为
(Ⅱ)由直线,可设,将式子代入椭圆得:
,则
设直线的斜率分别为,则 
下面只需证明:,事实上,


点评:解决该试题的关键是能利用椭圆的性质得到a,b,c,的值,进而得到椭圆方程,同时能利用韦达定理得到斜率的关系式。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

椭圆的左焦点为F,右顶点为A,以FA为直径的圆经过椭圆的上顶点,则椭圆的离心率为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆的右焦点F2作倾斜角为弦AB,则|AB︳为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的长轴长为10,离心率,则椭圆的方程是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的一个焦点是,且截直线所得弦长为,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设双曲线的两个焦点分别为,离心率为2.
(Ⅰ)求此双曲线的渐近线的方程;
(Ⅱ)若分别为上的点,且,求线段的中点的轨迹方程,并说明轨迹是什么曲线;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的中心在原点,焦点在轴上,长轴长为4,短轴长为2,则椭圆方程是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(本题满分14分)
已知椭圆=1(a>b>0)的左右顶点为,上下顶点为, 左右焦点为,若为等腰直角三角形(1)求椭圆的离心率(2)若的面积为6,求椭圆的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A、B、C是椭圆上的三点,其中点A的坐标为,BC过椭圆m的中心,且

(1)求椭圆的方程;
(2)过点的直线l(斜率存在时)与椭圆m交于两点P,Q,
设D为椭圆m与y轴负半轴的交点,且,求实数t的取值范围.

查看答案和解析>>

同步练习册答案