精英家教网 > 高中数学 > 题目详情

【题目】已知斜率为k的直线l经过点(-1,0),且与抛物线C:y2=2px(p>0,p为常数)交于不同的两点M,N.k=时,弦MN的长为.

(1)求抛物线C的标准方程.

(2)过点M的直线交抛物线于另一点Q,且直线MQ经过点B(1,-1),判断直线NQ是否过定点?若过定点,求出该点坐标;若不过定点,请说明理由.

【答案】(1);(2)见解析

【解析】

(1)直线方程为,代入曲线的方程,由此利用弦长公式能求出抛物线C的标准方程;

(2)设,得到直线MN的方程,同理得到MQNQ的方程,将点代入MN的方程,得到,由在直线MQ上,联立即可得到结论.

(1)当k=时,直线l的方程为y=(x+1),即x=2y-1.

联立消去xy2-4py+2p=0.

M(x1,y1),N(x2,y2),y1+y2=4p,y1y2=2p,|MN|=|y1-y2|=×=4,解得p=2p=-(舍去),

所以抛物线C的标准方程为y2=4x.

(2)设M(t2,2t),N(,2t1),Q(,2t2),则k==,则直线MN的方程为y-2t=(x-t2),即2x-(t+t1)y+2tt1=0,同理可得直线MQ的方程为2x-(t+t2)y+2tt2=0,直线NQ的方程为2x-(t1+t2)y+2t1t2=0.

由点(-1,0)在直线MN上,可得tt1=1,即t=①.由B(1,-1)在直线MQ上,可得2+t+t2+2tt2=0,将①代入可得t1t2=-2(t1+t2)-1②,将②代入直线NQ的方程可得2x-(t1+t2)y-4(t1+t2)-2=0,易得直线NQ过定点(1,-4).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sinx﹣xcosx.
(1)讨论f(x)在(0,2π)上的单调性;
(2)若关于x的方程f(x)﹣x2+2πx﹣m=0在(0,2π)有两个根,求实数m的取值范围.
(3)求证:当x∈(0, )时,f(x)< x3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出如下四个说法

已知pq都是命题,若pq为假命题,则pq均为假命题

命题a>b,则3a>3b-1”的否命题为ab,则3a≤3b-1”;

命题xR,x2+1≥0”的否定是x0R,+1<0”;

a≥0”x0R,a+x0+1≥0”的充分必要条件

其中正确说法的序号是 ( )

A. ①③ B. ②③ C. ②③④ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小学对一年级的甲、乙两个班进行“数学学前教育”对“小学数学成绩优秀”影响的试验,其中甲班为试验班(实施了数学学前教育),乙班为对比班(和甲班一样进行常规教学,但没有实施数学学前教育),在期末测试后得到如下数据:

优秀人数

非优秀人数

总计

甲班

30

20

50

乙班

25

25

50

总计

55

45

100

能否在犯错误的概率不超过0.01的前提下,认为进行“数学学前教育”对“小学数学成绩优秀”有积极作用?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,圆C1:(x﹣1)2+y2=2,圆C2:(x﹣m)2+(y+m)2=m2 . 圆C2上存在点P满足:过点P向圆C1作两条切线PA,PB,切点为A,B,△ABP的面积为1,则正数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:(a>b>0)的离心率为,以坐标原点O为圆心,椭圆C的短半轴长为半径的圆与直线x+y+=0相切.A,B分别是椭圆C的左、右顶点,直线lB点且与x轴垂直.

(1)求椭圆C的标准方程;

(2)设G是椭圆C上异于A,B的任意一点,过点GGH⊥x轴于点H,延长HG到点Q使得|HG|=|GQ|,连接AQ并延长交直线l于点M,N为线段MB的中点,判断直线QN与以AB为直径的圆O的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了普及环保知识,增强环保意识,某大学从理工类专业的A班和文史类专业的B班各抽取20名同学参加环保知识测试.统计得到成绩与专业的列联表如下所示:

优秀

非优秀

总计

A

14

6

20

B

7

13

20

总计

21

19

40

则下列说法正确的是 ( )

A. 有99%的把握认为环保知识测试成绩与专业有关

B. 有99%的把握认为环保知识测试成绩与专业无关

C. 有95%的把握认为环保知识测试成绩与专业有关

D. 有95%的把握认为环保知识测试成绩与专业无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的离心率为,坐标原点O到直线x+y-b=0的距离为.

(1)求椭圆C的标准方程;

(2)设过椭圆C的右焦点F且倾斜角为45°的直线l与椭圆C交于A,B两点,对于椭圆C上一点M,若(λ>0,μ>0),求λμ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修:4﹣2:矩阵与变换
若圆C:x2+y2=1在矩阵 (a>0,b>0)对应的变换下变成椭圆E: ,求矩阵A的逆矩阵A1

查看答案和解析>>

同步练习册答案