【题目】一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;
(Ⅱ)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.
【答案】解:(Ⅰ)从袋中随机抽取两个球,可能的结果有6种,而取出的球的编号之和不大于4的事件有两个,1和2,1和3,
∴取出的球的编号之和不大于4的概率P=
(Ⅱ)先从袋中随机取一个球,该球的编号为m,将球放回袋中,
然后再从袋中随机取一个球,该球的编号为n,
所有(m,n)有4×4=16种,
而n≥m+2有1和3,1和4,2和4三种结果,
∴P=1﹣ =
【解析】(1)从袋中随机抽取两个球,可能的结果有6种,而取出的球的编号之和不大于4的事件有两个,1和2,1和3,两种情况,求比值得到结果.(2)有放回的取球,根据分步计数原理可知有16种结果,满足条件的比较多不好列举,可以从他的对立事件来做.
【考点精析】解答此题的关键在于理解互斥事件与对立事件的相关知识,掌握互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生;而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形.
科目:高中数学 来源: 题型:
【题目】已知集合M={f(x)|f2(x)﹣f2(y)=f(x+y)f(x﹣y),x,y∈R},有下列命题
①若f(x)= ,则f(x)∈M;
②若f(x)=2x,则f(x)∈M;
③f(x)∈M,则y=f(x)的图象关于原点对称;
④f(x)∈M,则对于任意实数x1 , x2(x1≠x2),总有 <0成立;
其中所有正确命题的序号是 . (写出所有正确命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆C的中心为原点O,F(﹣2 ,0)为C的左焦点,P为C上一点,满足|OP|=|OF|且|PF|=4,则椭圆C的方程为( )
A. =1
B. =1
C. =1
D. =1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (>b>0)的离心率为,A(,0), B(0,b),O(0,0),△OAB的面积为1.
(1)求椭圆C的方程;
(2)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N.求证:|AN|·|BM|为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:(x+1)(x﹣5)≤0,命题q:1﹣m≤x<1+m(m>0).
(1)若p是q的充分条件,求实数m的取值范围;
(2)若m=5,“p∨q”为真命题,“p∧q”为假命题,求实数x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.现已画出函数f(x)在y轴左侧的图象,如图所示,根据图象:
(1)写出函数f(x),x∈R的增区间并将图象补充完整;
(2)写出函数f(x),x∈R的解析式;
(3)若函数g(x)=f(x)﹣4ax+2,x∈[1,3],求函数g(x)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=bax(a>0,且a≠1,b∈R)的图象经过点A(1,6),B(3,24).
(1)设g(x)= ﹣ ,确定函数g(x)的奇偶性;
(2)若对任意x∈(﹣∞,1],不等式( )x≥2m+1恒成立,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com