精英家教网 > 高中数学 > 题目详情
16.已知幂函数y=f(x)的图象过点(2,$\sqrt{2}$),则下列说法正确的是(  )
A.f(x)是奇函数,则在(0,+∞)上是增函数
B.f(x)是偶函数,则在(0,+∞)上是减函数
C.f(x)既不是奇函数也不是偶函数,且在(0,+∞)上是增函数
D.f(x)既不是奇函数也不是偶函数,且在(0,+∞)上是减函数

分析 求出幂函数的解析式,从而判断函数的奇偶性和单调性问题.

解答 解:∵幂函数y=xα的图象过点(2,$\sqrt{2}$),
∴$\sqrt{2}$=2α,解得α=$\frac{1}{2}$,
故f(x)=$\sqrt{x}$,
故f(x)既不是奇函数也不是偶函数,且在(0,+∞)上是增函数,
故选:C.

点评 本题考查了幂函数的定义,考查函数的单调性和奇偶性问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知m>0,n>0,空间向量$\overrightarrow{a}$=(m,4,-3)与$\overrightarrow{b}$=(1,n,2)垂直,则mn的最大值为(  )
A.$\frac{3}{2}$B.3C.9、D.$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.函数f(x)=4sinωx•cos(ωx+$\frac{π}{6}$)+1(ω>0),其图象上有两点A(s,t),B(s+2π,t),其中-2<t<2,线段AB与函数图象有五个交点.
(Ⅰ)求ω的值;
(Ⅱ)若函数f(x)在[x1,x2]和[x3,x4]上单调递增,在[x2,x3]上单调递减,且满足等式x4-x3=x2-x1=$\frac{2}{3}$(x3-x2),求x1、x4所有可能取值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=sin(2x+$\frac{π}{3}$)的图象可以由函数y=sin2x的图象(  )得到.
A.向左平移$\frac{π}{3}$个单位长度B.向右平移$\frac{π}{3}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如果全集U={1,2,3,4,5},M={1,2,5},则∁UM=(  )
A.{1,2}B.{3,4}C.{5}D.{1,2,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数y=sinx+1与y=$\frac{x+2}{x}$在[-a,a](a∈Z,且a>2017)上有m个交点(x1,y1),(x2,y2),…,(xm,ym),则(x1+y1)+(x2+y2)+…+(xm+ym)=(  )
A.0B.mC.2mD.2017

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=loga$\frac{x-2a}{x+2a}$,g(x)=loga(x+2a)+loga(4a-x),其中a>0,且a≠1.
(1)求f(x)的定义域,并判断f(x)的奇偶性;
(2)已知区间D=[2a+1,2a+$\frac{3}{2}$]满足3a∉D,设函数h(x)=f(x)+g(x),h(x)的定义域为D,若对任意x∈D,不等式|h(x)|≤2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和${A_n}={n^2}({n∈{N^*}}),{b_n}=\frac{a_n}{{{a_{n+1}}}}+\frac{{{a_{n+1}}}}{a_n}({n∈{N^*}})$,数列{bn}的前n项和为Bn
(1)求数列{an}的通项公式;
(2)设${c_n}=\frac{a_n}{2^n}({n∈{N^*}})$,求数列{cn}的前n项和Cn
(3)证明:$2n<{B_n}<2n+2({n∈{N^*}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设实数x,y满足约束条件$\left\{\begin{array}{l}x-2y-5≤0\\ x+y-4≤0\\ 3x+y-10≥0\end{array}\right.$,则z=x2+y2的最小值为(  )
A.$\sqrt{10}$B.10C.8D.5

查看答案和解析>>

同步练习册答案