精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱台中,GH分别为上的点,平面平面.

1)证明:平面平面

2)若,求二面角的大小.

【答案】1)证明见解析(2

【解析】

1)证明得到平面,得到答案.

2)分别以所在的直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系,计算平面的一个法向量为,平面的一个法向量为

,计算夹角得到答案.

1)因为平面平面,平面平面

平面平面,所以.

因为,所以四边形为平行四边形,所以

因为,所以H的中点.

同理G的中点,所以,因为,所以

,所以四边形是平行四边形,所以

,所以.

平面,所以平面

平面,所以平面平面

2,所以.

分别以所在的直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则.

设平面的一个法向量为,因为

,取,得.

设平面的一个法向量为,因为

,取,得.

所以,则二面角的大小为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百、千位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字大于200的概率为( ).

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面,已知,点E是棱的中点.

1)求证:平面ABC

2)在棱CA上是否存在一点M,使得EM与平面所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在多面体中,四边形是正方形,平面的中点.

1)求证:

2)求平面与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某公司举行的一次真假游戏的有奖竞猜中,设置了“科技”和“生活”这两类试题,规定每位职工最多竞猜3次,每次竞猜的结果相互独立.猜中一道“科技”类试题得4分,猜中一道“生活”类试题得2分,两类试题猜不中的都得0分.将职工得分逐次累加并用X表示,如果X的值不低于4分就认为通过游戏的竞猜,立即停止竞猜,否则继续竞猜,直到竞猜完3次为止.竞猜的方案有以下两种:方案1:先猜一道“科技”类试题,然后再连猜两道“生活”类试题;

方案2:连猜三道“生活”类试题.

设职工甲猜中一道“科技”类试题的概率为0.5,猜中一道“生活”类试题的概率为0.6.

(1)你认为职工甲选择哪种方案通过竞猜的可能性大?并说明理由.

(2)职工甲选择哪一种方案所得平均分高?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线,直线l的参数方程为:t为参数),直线l与曲线C分别交于两点.

1)写出曲线C和直线l的普通方程;

2)若点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代儒家要求学生掌握六种基本才能:礼乐射御书数,某校国学社团周末开展六艺课程讲座活动,每天连排六节,每艺一节,排课有如下要求:不能相邻,必须相邻,则六艺课程讲座不同的排课顺序共有(

A.24B.72C.96D.144

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中,正确命题的个数有(

②命题“”的否定是“

③“若,则中至少有一个不小于2”的逆命题是真命题

④复数,则的充分不必要条件是

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥的底面是边长为2的正方形,平面平面

1)求证:平面平面

2)设的中点,问边上是否存在一点,使平面,并求此时点到平面的距离.

查看答案和解析>>

同步练习册答案