精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆)的上顶点与抛物线)的焦点重合.

(1)设椭圆和抛物线交于 两点,若,求椭圆的方程;

(2)设直线与抛物线和椭圆均相切,切点分别为 ,记的面积为,求证: .

【答案】(1) (2)见解析

【解析】试题分析:(1)根据椭圆几何性质得p,再根据对称性得A坐标,代人椭圆方程可得a,(2)先根据导数几何意义得抛物线切线方程,再与椭圆方程联立,根据判别式为零确定切点,根据三角形面积公式表示面积,最后根据基本不等式求最值,证得结论.

试题解析:(1)易知,则抛物线的方程为

及图形的对称性,不妨设

代入,得,则.

将之代入椭圆方程得,得

所以椭圆的方程为.

(2)设切点 ,求导得,则切线的斜率为,方程,即

将之与椭圆联立得

令判别式

化简整理得 ,此时

设直线轴交于点,则

由基本不等式得

,仅当时取等号,但此时,故等号无法取得,于是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知圆,点是圆上任意一点,线段的垂直平分线和半径相交于.

(1)求动点的轨迹的方程;

(2)已知是轨迹的三个动点,点在一象限, 关于原点对称,且,问的面积是否存在最小值?若存在,求出此最小值及相应直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定点,若是直线上位于第一象限内的一点,直线轴的正半轴相交于点.试探究:的面积是否具有最小值?若有,求出点的坐标;若没有,则说明理由.若点为直线上的任意一点,情况又会怎样呢?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由国家公安部提出,国家质量监督检验检疫总局发布的《车辆驾驶人员血液、呼气酒精含量阀值与检验标准()》于日正式实施.车辆驾驶人员酒饮后或者醉酒后驾车血液中的酒精含量阀值见表.经过反复试验,一般情况下,某人喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”见图,

瓶啤酒的情况

且图表示的函数模型,则该人喝一瓶啤酒后至少经过多长时间才可以驾车(时间以整小时计算)?(参考数据:

(  )

驾驶行为类型

阀值

饮酒后驾车

醉酒后驾车

车辆驾车人员血液酒精含量阀值

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】提升城市道路通行能力,可为市民提供更多出行便利.我校某研究性学习小组对成都市一中心路段(限行速度为千米/小时)的拥堵情况进行调查统计,通过数据分析发现:该路段的车流速度(/千米)与车流密度(千米/小时)之间存在如下关系:如果车流密度不超过该路段畅通无阻(车流速度为限行速度);当车流密度在时,车流速度是车流密度的一次函数;车流密度一旦达到该路段交通完全瘫痪(车流速度为零).

1)求关于的函数

2)已知车流量(单位时间内通过的车辆数)等于车流密度与车流速度的乘积,求此路段车流量的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,假命题是( )

A. B.

C. 的充要条件是 D. 的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲同学写出三个不等式:::,然后将的值告诉了乙、丙、丁三位同学,要求他们各用一句话来描述,以下是甲、乙、丙、丁四位同学的描述:

乙:为整数;

丙:成立的充分不必要条件;

丁:成立的必要不充分条件;

甲:三位同学说得都对,则的值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(>0)的部分图象如图所示,AB分别是这部分图象上的最高点、最低点,为坐标原点,若·0则下列结论:①函数是周期为4的奇函数;②函数是周期为4的偶函数;③函数的最大值是;④函数向左平移个单位后得到的函数图象关于原点对称;其中错误命题的个数是(

A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品. 表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.

表1:甲套设备的样本的频数分布表

质量指标值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

频数

1

4

19

20

5

1

图1:乙套设备的样本的频率分布直方图

(1)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;

甲套设备

乙套设备

合计

合格品

不合格品

合计

,求的期望.

附:

P(K2k0)

0.15

0.10

0.050

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

.

查看答案和解析>>

同步练习册答案