精英家教网 > 高中数学 > 题目详情

(12分)设函数时取得极值.
(Ⅰ)求a、b的值;
(Ⅱ)若对于任意的,都有成立,求c的取值范围.

(Ⅰ).(Ⅱ)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
???(1)若函数是定义域上的单调函数,求实数的取值范围;
???(2)求函数的极值点。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设a<1,集合.
(1)求集合D(用区间表示);
(2)求函数在D内的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题14分)已知函数.
(1)若,求曲线处切线的斜率;
(2)求的单调区间;
(3)设,若对任意,均存在,使得,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的单调区间和最小值;
(Ⅱ)若函数上是最小值为,求的值;
(Ⅲ)当(其中="2.718" 28…是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为正实数,2.7182……
(1)当时,求在点处的切线方程。
(2)是否存在非零实数,使恒成立。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且其导函数的图像过原点.
(1)当时,求函数的图像在处的切线方程;
(2)若存在,使得,求的最大值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求函数上的最小值;
(2)若函数上存在单调递增区间,试求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给出一个不等式(x∈R),经验证:当c=1,2,3时,不等式对一切实数x都成立。试问:当c取任何正数时,不等式对任何实数x是否都成立?若能成立,请给出证明;若不成立,请求出c的取值范围,使不等式对任何实数x都能成立。

查看答案和解析>>

同步练习册答案