精英家教网 > 高中数学 > 题目详情
8.在△ABC中,若a=1,c=2,B=60°,则边b等于(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\sqrt{3}$D.1

分析 利用余弦定理即可得出.

解答 解:由余弦定理可得:b2=12+22-2×1×2cos60°=3,
解得b=$\sqrt{3}$.
故选:C.

点评 本题考查了余弦定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知二次函数f(x)满足关系式f(-2+x)=f(-2-x),f(x)的图象被x轴截得的线段长为4,且方程f(x)=x有唯一的解,求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.甲、乙、丙、丁和戊5 名学生进行劳动技术比赛,决出第一名到第5 名的名次.若甲乙都没有得到冠军,并且乙不是最差的,5 个人的名次排名可能有多少种不同的情况?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知α,β∈(0,$\frac{π}{4}$),$\frac{tan\frac{α}{2}}{1-ta{n}^{2}\frac{α}{2}}$=$\frac{1}{4}$,且3sin β=sin(2α+β),则α+β=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.点P从(1,0)出发,沿单位圆逆时针方向运动$\frac{4π}{3}$弧长到达Q 点,则Q点的坐标为(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.下列结论中,正确结论的序号为①②④
①已知M,N均为正数,则“M>N”是“log2M>log2N”的充要条件;
②如果命题“p或q”是真命题,“非p”是真命题,则q一定是真命题;
③若p为:?x>0,x2+2x-2≤0,则¬p为:?x≤0,x2+2x-2>0;
④命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若z∈C,且i•z=1-i,则复数z=-1-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列说法
①角α是第一象限的角,则角2α是第一或第二象限的角;
②变量“正方体的棱长”和变量“正方体的体积”属于相关关系;
③掷一粒均匀的骰子,出现“向上的点数为偶数”的概率为$\frac{1}{2}$;
④向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|,则存在实数λ,使得$\overrightarrow{a}$=λ$\overrightarrow{b}$,
其中正确的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.定义在R上的可到函数f(x)满足:对任意x∈R有f(x)+f(-x)=$\frac{{x}^{2}}{2}$,且在区间[0,+∞)上有2f′(x)>x,若f(a)-f(2-a)≥a-1,则实数a的取值范围为a≥1.

查看答案和解析>>

同步练习册答案