精英家教网 > 高中数学 > 题目详情

【题目】如图,已知在正四棱锥中, 为侧棱的中点, 连接相交于点

(1)证明:

(2)证明:

(3)设,若质点从点沿平面与平面的表 面运动到点的最短路径恰好经过点求正四棱锥 的体积。

【答案】(1)详见解析;(2)详见解析;(3).

【解析】试题分析:

(1)由中位线定理可得线线平面,从而有线面平行;

2)正四棱锥中,底面是正方形,因此有,又PO是正四棱锥的高,从而有POAC,这样就有AC与平面PBD垂直,从而得面面垂直;

3沿PD摊平,由AMC共线,因此新的平面图形是平行四边形,从而为菱形,M到底面ABCD的距离为原正四棱锥高PO的一半,计算可得体积.

试题解析:

(1) 证明:连接OM

OM分别为BDPD的中点,

PBDOM//PB

PBACMOMACM

PB//ACM

(2) 证明:连接PO.

在正四棱锥中,PA=PCOAC的中点,

POACBDAC

POBD=O AC平面PBD

AC平面ACM平面ACM 平面PBD

(3) 如图,把PAD PCD沿PD展开成平面四边形PADC1

由题意可知AMC1三点共线

∵△PAD≌△PCD, MPD的中点,

AM=MC1MAC1中点,

平面四边形PADC1为平行四边形

PA= PC, ∴平面四边形PADC1为菱形

∴正四棱锥的侧棱长为2

POACPOBDPO ⊥面ABCDPO为正四棱锥的高

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:x0∈R,x02﹣2x0+3≤0的否定是x∈R,x2﹣2x+3>0,命题q:双曲线 ﹣y2=1的离心率为2,则下列命题中为真命题的是(
A.p∨q
B.¬p∧q
C.¬p∨q
D.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)= ,f(x)=g(x)﹣ax.
(1)求函数g(x)的单调区间;
(2)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下: 表1:男生表2:女生

等级

优秀

合格

尚待改进

等级

优秀

合格

尚待改进

频数

15

x

5

频数

15

3

y


(1)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率;
(2)由表中统计数据填写下边2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.

男生

女生

总计

优秀

非优秀

总计

参考数据与公式:
K2= ,其中n=a+b+c+d.
临界值表:

P(K2>k0

0.05

0.05

0.01

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则下列说法正确的(
A.a∈(2,4),输出的i的值为5
B.a∈(4,5),输出的i的值为5
C.a∈(3,4),输出的i的值为5
D.a∈(2,4),输出的i的值为5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC内角A,B,C所对的边分别为a,b,c,且
(1)若 ,求△ABC的面积;
(2)若 ,且c>b,BC边的中点为D,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l1的参数方程为 ,(t为参数),直线l2的参数方程为 ,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣ =0,M为l3与C的交点,求M的极径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查喜欢旅游是否与性别有关,调查人员就“是否喜欢旅游”这个问题,在火车站分别随机调研了50名女性和50名男性,根据调研结果得到如图所示的等高条形图
(Ⅰ)完成下列2×2列联表:

喜欢旅游

不喜欢旅游

合计

女性

男性

合计

(II)能否在犯错率不超过0.025的前提下认为“喜欢旅游与性别有关”
附:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2= ,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案