精英家教网 > 高中数学 > 题目详情

【题目】
(1)设函数 ,求 的最大值;
(2)试判断方程 内存在根的个数,并说明理由.

【答案】
(1)解:当 时,若

,由 ,可知 ,故 .

时,由 ,可得:

时, 单调递增; 时, 单调递减,

可知 ,且 .

综上可得,函数 的最大值为 .


(2)解:方程 内存在唯一的根.

理由如下:设

时,

所以存在 ,使得: .

因为

所以当 时,

时,

所以当 时, 单调递增,

所以方程 内存在唯一的根.


【解析】对于(1)分段函数最值的研究,要结合分段函数的导致,分别求出最值,各段最大值的最大者就是最大值,要注意分类讨论。
对于(2)判断方程的实根个数时,往往通过函数的导致,判断函数的单调性,利用函数的零点推出结果。
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的极值的理解,了解极值反映的是函数在某一点附近的大小情况.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)当 时,求 的单调区间;
(2)设 是曲线 图象上的两个相异的点,若直线 的斜率 恒成立,求实数 的取值范围;
(3)设函数 有两个极值点 ,且 ,若 恒成立,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠ABC=∠BAD=90°,F分别为ABPC的中点.

(I)若四棱锥P-ABCD的体积为4,求PA的长;

(II)求证:PEBC

(III)求PC与平面PAD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图给出的是计算的值的一个程序框图,则判断框内应填入的条件是( )

A.
B.i>1005
C.
D.i>1006

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·新课标1卷)执行右面的程序框图,如果输入的t=0.01,则输出的n=( )

A.5
B.6
C.10
D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是由正整数构成的数表,用aij表示i行第j个数(ijN).此表中ailaiii,每行中除首尾两数外,其他各数分别等于其肩膀上的两数之和.

(1)写出数表的第六行(从左至右依次列出).

(2)设第n行的第二个数为bnn≥2),bn

(3)令,记Tn为数列n项和,求的最大值,并求此时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人参加普法知识竞赛,共有5个不同题目,选择题3个,判断题2个,甲、乙两人各抽一题.

(1)求甲抽到判断题,乙抽到选择题的概率是多少;

(2)求甲、乙两人中至少有一人抽到选择题的概率是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 =1(a>b>0),F1 , F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.

(1)若∠F1AB=90°,求椭圆的离心率;
(2)若椭圆的焦距为2,且 =2 ,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中,底面 是平行四边形,侧面 底面 分别为 的中点, .

(1)求证: 平面
(2)求证:平面 平面 .

查看答案和解析>>

同步练习册答案