精英家教网 > 高中数学 > 题目详情

【题目】我国的烟花名目繁多,花色品种繁杂.其中“菊花”烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂,通过研究,发现该型烟花爆裂时距地面的高度h(单位:米)与时间t(单位:秒)存在函数关系,并得到相关数据如下表:

时间t

2

4

高度h

10

25

17

( I)根据上表数据,从下列函数中,选取一个函数描述该型烟花爆裂时距地面的高度h与时间t的变化关系:y1=kt+b,y2=at2+bt+c,y3=abt , 确定此函数解析式,并简单说明理由;
( II)利用你选取的函数,判断烟花爆裂的最佳时刻,并求出此时烟花距地面的高度.

【答案】解:(I)由表中数据分析可知,烟花距地面的高度随时间的变化呈先上升再下降的趋势,则在给定的三类函数中,只有y2可能满足,故选择取该函数.
设h(t)=at2+bt+c,有
所以h(t)=﹣4t2+20t+1(t≥0),
(Ⅱ)
∴当烟花冲出后2.5s是爆裂的最佳时刻,此时距地面的高度为26米
【解析】(I)由表中数据分析可知,烟花距地面的高度随时间的变化呈先上升再下降的趋势,则在给定的三类函数中,只有y2可能满足,设h(t)=at2+bt+c,利用待定系数法将表格所提供的三组数据代入,列方程组求出函数解析式;(II)由二次函数的图象与性质,求出即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(1﹣x)+loga(x+3),其中0<a<1.
(1)求函数f(x)的定义域;
(2)若函数f(x)的最小值为﹣4,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1 , F2为椭圆C: =1(a>b>0)的左右焦点,O是坐标原点,过F2作垂直于x轴的直线MF2交椭圆于M,设|MF2|=d.
(1)证明:b2=ad;
(2)若M的坐标为( ,1),求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2x(x∈[﹣1,2])的值域为集合A,g(x)=ax+2(x∈[﹣1,2])的值域为集合B.若AB,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解甲、乙两个班级某次考试的数学成绩(单位:分),从甲、乙两个班级中分别随机抽取5名学生的成绩作样本,如图是样本的茎叶图,规定:成绩不低于120分时为优秀成绩.

(1)从甲班的样本中有放回的随机抽取2个数据,求其中只有一个优秀成绩的概率;
(2)从甲、乙两个班级的样本中分别抽取2名学生的成绩,记获优秀成绩的总人数为X,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图为某市2017年2月28天的日空气质量指数折线图.

由中国空气质量在线监测分析平台提供的空气质量指数标准如下:

(1)请根据所给的折线图补全下方的频率分布直方图(并用铅笔涂黑矩形区域),并估算该市2月份空气质量指数监测数据的平均数(保留小数点后一位);

(2)研究人员发现,空气质量指数测评中与燃烧排放的两个项目存在线性相关关系,以为单位,下表给出的相关数据:

关于的回归方程,并估计当排放量是时, 的值.

(用最小二乘法求回归方程的系数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为),数列满足:,且).

(Ⅰ)求数列的通项公式;

(Ⅱ)求证:数列为等比数列;

(Ⅲ)求数列的前项和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=|x+1|+|x﹣1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≤log2(a2﹣4a+12)对任意实数a恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数是同一函数的是(

②f(x)=|x|与
③f(x)=x0与g(x)=1;
④f(x)=x2﹣2x﹣1与g(t)=t2﹣2t﹣1.
A.①②
B.①③
C.②④
D.③④

查看答案和解析>>

同步练习册答案