精英家教网 > 高中数学 > 题目详情

【题目】如图,在菱形ABCD中,∠ABC=60°,ACBD相交于点O,AE⊥平面ABCD,CF//AE,AB=AE=2.

(1)求证:BD⊥平面ACFE;

(2)当直线FO与平面BDE所成的角为45°时,求二面角B﹣EF﹣D的余弦值.

【答案】(1)见解析;(2)余弦值为.

【解析】试题分析:1)因为底面是菱形,故,而由平面可得,故平面.(2)取 的中点为为坐标原点,,,建立空间直角坐标系利用空间向量计算二面角的余弦值.

解析:(1)证明:在菱形,可得又因为平面 , 平面.

(2) 的中点为为坐标原点,,,建立空间直角坐标系,则,设平面的法向量

,也就是,可取

解得

设平面的法向量为

设平面的法向量为 ,

同理①可得

,则二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列函数:①f(x)=()x;②f(x)=x2;③f(x)=x3;④f(x)=;⑤f(x)=log2x.其中满足条件f()>(0<x1<x2)的函数的个数是(  )

A. 1 B. 2

C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为若椭圆上一点满足,且椭圆过点,过点的直线与椭圆交于两点

1)求椭圆的方程;

2)若点是点轴上的垂足,延长交椭圆,求证: 三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知多面体的底面是边长为2的正方形, 底面 ,且

(Ⅰ)记线段的中点为,在平面内过点作一条直线与平面平行,要求保留作图痕迹,但不要求证明.

(Ⅱ)求直线与平面所成角的正弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,直线经过的右顶点和上顶点.

(1)求椭圆的方程;

(2)设椭圆的右焦点为,过点作斜率不为的直线交椭圆两点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“过大年,吃水饺”是我国不少地方过春节的一大习俗,2018年春节前夕, 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标.

(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);

(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;

②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.

附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为

②若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是矩形,侧棱底面 分别是的中点, .

(Ⅰ)求证: 平面

(Ⅱ)求证: 平面

(Ⅲ)若 ,求三棱锥的体积..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中,a2=5,S5=40.等比数列{bn}中,b1=3,b4=81,

(1)求{an}{bn}的通项公式

(2)令cn=anbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市初三毕业生参加中考要进行体育测试,某实验中学初三(8)班的一次体育测试成绩的茎叶图和频率分布直方图都受到不同程度的涂黑,但可见部分如图,据此解答如下问题.

(Ⅰ)求全班人数及中位数,并重新画出频率直方图;

(Ⅱ)若要从分数在之间的成绩中任取两个学生成绩分析学生得分情况,在抽取的学生中,求至少有一个分数在之间的概率.

查看答案和解析>>

同步练习册答案