【题目】已知函数f(x)= sinxcosx﹣cos2x﹣ .
(Ⅰ)求函数f(x)的对称轴方程;
(Ⅱ)将函数f(x)的图象上各点的纵坐标保持不变,横坐标伸长为原来的2倍,然后再向左平移 个单位,得到函数g(x)的图象.若a,b,c分别是△ABC三个内角A,B,C的对边,a=2,c=4,且g(B)=0,求b的值.
【答案】解:(Ⅰ)函数 = ,
令 ,解得 ,
所以函数f(x)的对称轴方程为 .
(Ⅱ)函数f(x)的图象各点纵坐标不变,横坐标伸长为原来的2倍,得到函数 的图象,
再向左平移 个单位,得到函数 的图象,所以函数 .
又△ABC中,g(B)=0,所以 ,又 ,
所以 ,则 .由余弦定理可知, ,
所以
【解析】(Ⅰ)利用三角恒等变换化简f(x)的解析式,再利用正弦函数的图象的对称性,求得函数f(x)的对称轴方程.(Ⅱ)利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用余弦定理求得b的值.
【考点精析】本题主要考查了函数y=Asin(ωx+φ)的图象变换和正弦定理的定义的相关知识点,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象;正弦定理:才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=a(x+lnx)(a>0),g(x)=x2 .
(1)若f(x)的图象在x=1处的切线恰好也是g(x)图象的切线.求实数a的值;
(2)对于区间[1,2]上的任意两个不相等的实数x1 , x2且x1<x2 , 都有f(x2)﹣f(x1)<g(x2)﹣g(x1)成立.试求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: 的离心率为 ,F1 , F2分别是它的左、右焦点,且存在直线l,使F1 , F2关于l的对称点恰好为圆C:x2+y2﹣4mx﹣2my+5m2﹣4=0(m∈R,m≠0)的一条直径的两个端点.
(1)求椭圆E的方程;
(2)设直线l与抛物线y2=2px(p>0)相交于A,B两点,射线F1A,F1B与椭圆E分别相交于点M,N,试探究:是否存在数集D,当且仅当p∈D时,总存在m,使点F1在以线段MN为直径的圆内?若存在,求出数集D;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的奇函数,且f(x)的图象关于直线x=1对称.
(1)求证:f(x)是周期为4的周期函数;
(2)若f(x)= (0<x≤1),求x∈[﹣5,﹣4]时,函数f(x)的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正四面体ABCD的顶点C在平面α内,且直线BC与平面α所成角为15°,顶点B在平面α上的射影为点O,当顶点A与点O的距离最大时,直线CD与平面α所成角的正弦值为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com