精英家教网 > 高中数学 > 题目详情

【题目】某工厂的污水处理程序如下:原始污水必先经过A系统处理,处理后的污水(A级水)达到环保标准(简称达标)的概率为.经化验检测,若确认达标便可直接排放;若不达标则必须进行B系统处理后直接排放.

某厂现有个标准水量的A级水池,分别取样、检测. 多个污水样本检测时,既可以逐个化验,也可以将若干个样本混合在一起化验.混合样本中只要有样本不达标,则混合样本的化验结果必不达标.若混合样本不达标,则该组中各个样本必须再逐个化验;若混合样本达标,则原水池的污水直接排放.

现有以下四种方案,

方案一:逐个化验;

方案二:平均分成两组化验;

方案三:三个样本混在一起化验,剩下的一个单独化验;

方案四:混在一起化验.

化验次数的期望值越小,则方案的越“优”.

(Ⅰ) 若,求个A级水样本混合化验结果不达标的概率;

(Ⅱ) 若,现有个A级水样本需要化验,请问:方案一,二,四中哪个最“优”?

(Ⅲ) 若“方案三”比“方案四”更“优”,求的取值范围.

【答案】(Ⅰ);(II)见解析;(III)见解析.

【解析】试题分析:(Ⅰ)根据所给相互独立事件重复发生的概率为两相互独立事件概率乘积,及相互独立事件的概率和为,可得结果;(Ⅱ)分别求出三种方案对应分布列,进一步求出各自的期望值,比较期望值大小得最优方案;(Ⅲ)分别求出期望值,利用期望大小关系建立关于的不等式,解得的取值范围.

试题解析:(Ⅰ)该混合样本达标的概率是; 2分

所以根据对立事件原理,不达标的概率为

(II)方案一:逐个检测,检测次数为

方案二:由(I)知,每组两个样本的检测时,若达标则检测次数为,概率为;若不达标则检测次数为,概率为. 故方案二的检测次数 可能取 .概率分布列如下,

可求得方案二的期望为

方案四:混在一起检测,记检测次数为 可取 .概率分布列如下,

可求得方案四的期望为

比较可得,故选择方案四最“优”.

(III)解:方案三:设化验次数 可取

方案四:设化验次数 可取

由题意得

故当方案三比方案四更

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在长方体ABCD﹣A1B1C1D1中,AB=2 ,AD=2 ,AA1=2,BC和A1C1所成的角=度 AA1和BC1所成的角=度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(1)求证:平面PBD⊥平面PAC;
(2)求点A到平面PBD的距离;
(3)求二面角A﹣PB﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的导函数.

(1)若处的切线方程为,求的值;

(2)若时取得最小值,求的取值范围;

(3)在(1)的条件下,当时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(﹣1,1),则函数g(x)=f( )+f(x﹣1)的定义域为(
A.(﹣2,0)
B.(﹣2,2)
C.(0,2)
D.(﹣ ,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 是奇函数.
(1)求实数a的值;
(2)用定义证明函数f(x)在R上的单调性;
(3)若对任意的x∈R,不等式f(x2﹣x)+f(2x2﹣k)>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面为菱形且, , 分别为的中点, , ,

(Ⅰ)证明:直线∥平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= (x∈R),若f(x)满足f(﹣x)=﹣f(x).
(1)求实数a的值;
(2)证明f(x)是R上的单调减函数(定义法).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 是定义在(﹣1,1)上的奇函数,且f(1)=1.
(1)求函数f(x)的解析式;
(2)判断并证明f(x)在(﹣1,1)上的单调性.

查看答案和解析>>

同步练习册答案