精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左右焦点分别为,离心率,短轴长为

(1)求椭圆的标准方程;

(2)过的直线与椭圆交于不同的两点,则的面积是否存在最大值?若存在,求出这个最大值及直线的方程;若不存在,请说明理由.

【答案】(1);(2)答案见解析.

【解析】试题分析:(1)由离心率,短轴为2a,可求得a,b,c.(2) 设直线的方程为,与椭圆方程组方程组,由韦达定理与三角形面积公式,转化为关于t的函数,利用函数出求得最大值。

试题解析;(1)根据题意,得解得

∴椭圆的标准方程为

(2)设,不妨设

由题知,直线的斜率不为零,可设直线的方程为

,可知,则

,则

时,,即在区间上单调递增,

,∴

即当时,的面积取得最大值3,

此时直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 是函数的导函数,则的图象大致是( )

A. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/8f50d3dfba9b485fac00e42a95909498.png] B. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/74ae44978a70424c961e850ed79072da.png]

C. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/2f113f7ec5294ba0bbd1f66b13f3e152.png] D. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/dbaa9025ccdb497380b769e5396c4c19.png]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了监控某种零件的一条生产线的生产过程检验员每天从该生产线上随机抽取16个零件并测量其尺寸(单位:cm).根据长期生产经验可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μσ2).

(1)假设生产状态正常X表示一天内抽取的16个零件中其尺寸在(μ-3σμ+3σ)之外的零件数P(X1)X的数学期望;

(2)一天内抽检零件中如果出现了尺寸在(μ-3σμ+3σ)之外的零件就认为这条生产线在这一天的生产过程可能出现了异常情况需对当天的生产过程进行检查.

①试说明上述监控生产过程方法的合理性;

②下面是检验员在一天内抽取的16个零件的尺寸:

经计算得==9.97s==≈0.212其中xi为抽取的第i个零件的尺寸i=1,2,,16.

用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值利用估计值判断是否需对当天的生产过程进行检查?剔除﹣3+3之外的数据用剩下的数据估计μσ(精确到0.01).

附:若随机变量Z服从正态分布N(μσ2),P(μ-3σ<Z<μ+3σ)=0.997 4.0.997 4160.959 2,0.09.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为:

(1)把直线的参数方程化为极坐标方程,把曲线的极坐标方程化为普通方程;

(2)求直线与曲线交点的极坐标(≥0,0≤).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司招聘员工,先由两位专家面试,若两位专家都同意通过,则视作通过初审予以录用;若两位专家都未同意通过,则视作未通过初审不予录用;当这两位专家意见不一致时,再由第三位专家进行复审,若能通过复审则予以录用,否则不予录用.设应聘人员获得每位初审专家通过的概率为0.5,复审能通过的概率为0.3,各专家评审的结果相互独立.

(Ⅰ)求某应聘人员被录用的概率;

(Ⅱ)若4人应聘,设X为被录用的人数,试求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,随着一带一路倡议的推进,中国与沿线国家旅游合作越来越密切,中国到一带一路沿线国家的游客人也越来越多,如图是2013-2018年中国到一带一路沿线国家的游客人次情况,则下列说法正确的是(  )

①2013-2018年中国到一带一路沿线国家的游客人次逐年增加

②2013-2018年这6年中,2016年中国到一带一路沿线国家的游客人次增幅最小

③2016-2018年这3年中,中国到一带一路沿线国家的游客人次每年的增幅基本持平

A.①③B.②③C.①②D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题某汽车销售公司作了一次抽样调查,并统计得出某款车的使用年限与所支出的总费用(万元)有如表的数据资料:

使用年限

2

3

4

5

6

总费用

2.2

3.8

5.5

6.5

7.0

(1) 在给出的坐标系中作出散点图;

(2)求线性回归方程中的

(3)估计使用年限为年时,车的使用总费用是多少?

(最小二乘法求线性回归方程系数公式.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆关于直线对称的圆为

(1)求圆C的方程;

(2)过点(1,0)作直线l与圆C交于A,B两点,O是坐标原点,是否存在直线l,使得∠AOB=90°?若存在,求出所有满足条件的直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区某农产品近几年的产量统计如表:

年份

2013

2014

2015

2016

2017

2018

年份代码

1

2

3

4

5

6

年产量(万吨)

6.6

6.7

7

7.1

7.2

7.4

(1)根据表中数据,建立关于的线性回归方程

,

(2)若近几年该农产品每千克的价格(单位:元)与年产量满足的函数关系式为,且每年该农产品都能售完.

①根据(1)中所建立的回归方程预测该地区2019()年该农产品的产量;

②当为何值时,销售额最大?

查看答案和解析>>

同步练习册答案