精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2+bx+c,g(x)=ax+b
(1)令F(x)=
f(x)g(x)
,当a、b、c满足什么条件时,F(x)为奇函数?
(2)令G(x)=f(x)-g(x),若a>b>c,且f(1)=0
(Ⅰ)求证函数G(x)的图象与x轴必有两个交点A、B;
(Ⅱ)求|AB|的取值范围.
分析:(1)利用定义可得F(-x)=-F(x),代入整理可求a,b,c 的关系
(2)(I)若a>b>c,且f(1)=0,可得a+c+b=0,a>0>c,G(x)=f(x)-g(x)=0,判断判别式△=(b-a)2-4ac>0即可
(II)由设 A(x1,0),B(x2,0)根据方程根与系数的关系可得,AB=|x2-x1|=
(x2+x1)2-4x1x2 
,结合a+b+c=0,a>0>c进行判断.
解答:解:(1)∵F(x)为奇函数,∴F(-x)=-F(x);
f(-x)
g(-x)
= -
f(x)
g(x)
?
a(-x)2-bx+c
-ax+b
=-
ax2+bx+c
ax+b

整理可得bc=0
bc=0,F(x)为奇函数
(2)(I)∵f(1)=a+c+b=0,a>b>c∴a>0>c
∵G(x)=f(x)-g(x)=ax2+(b-a)x+c-b
∴△=(b-a)2-4a(c-b)=(a+b)2-4ac>0
∴G(x)=0有两个根,函数G(x)的图象与x轴必有两个交点A、B
(II)设A(x1,0)B(x2,0)
∴|AB|=|x2-x1|  =
(x2+x1)2-4x1x2

=
(
a-b
a
)
2
-4
c
a
=
4+ (
c
a
) 2
>2
点评:本题综合考查了函数的奇偶性,函数与方程 的转化,方程的根与系数的关系,函数的图象与x轴相交的线段的长度的求解,知识比较多,是一道综合性比较好的试题,体现了函数、方程、不等式的相互转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案