精英家教网 > 高中数学 > 题目详情

【题目】已知函数为正常数),且函数的图像在轴上的截距相等;

1)求的值;

2)若为常数),试讨论函数的奇偶性.

【答案】1;(2)答案不唯一,见解析

【解析】

1)利用函数fx)与gx)的图象在y轴上的截距相等,建立方程,可求a的值;

2)利用奇偶函数的定义,确定b的值,进而可得函数的奇偶性.

1)由题意,∵函数fx)与gx)的图象在y轴上的截距相等,∴f0)=g0),即|a|1,又a0,故a1

2hx)=fx+b|x1|+b|x+1|,其定义域为R,∴h(﹣x)=|x+1|+b|x1|

hx)为偶函数,即hx)=h(﹣x),则有b1,此时h2)=4h(﹣2)=4

h2h(﹣2),即hx)不为奇函数;

hx)为奇函数,即hx)=﹣h(﹣x),则b=﹣1,此时h2)=2h(﹣2)=﹣2

h2h(﹣2),即hx)不为偶函数;

综上,当且仅当b1时,函数hx)为偶函数,且不为奇函数,当且仅当b=﹣1时,函数hx)为奇函数,且不为偶函数,当b≠±1时,函数hx)既非奇函数又非偶函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某地区某种昆虫产卵数和温度有关.现收集了一只该品种昆虫的产卵数(个)和温度)的7组观测数据,其散点图如所示:

根据散点图,结合函数知识,可以发现产卵数和温度可用方程来拟合,令,结合样本数据可知与温度可用线性回归方程来拟合.根据收集到的数据,计算得到如下值:

27

74

182

表中

1)求和温度的回归方程(回归系数结果精确到);

2)求产卵数关于温度的回归方程;若该地区一段时间内的气温在之间(包括),估计该品种一只昆虫的产卵数的范围.(参考数据:.)

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,,动点满足:直线与直线的斜率之积恒为,记动点的轨迹为曲线.

1)求曲线的方程;

2)若点位于第一象限,过点分别作直线,直线,直线交于点.

①若点的横坐标为-1,求点的坐标;

②直线与曲线交于点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,有下列五个命题:

存在反函数,且与反函数图象有公共点,则公共点一定在直线上;

上有定义,则一定是偶函数;

是偶函数,且有解,则解的个数一定是偶数;

是函数的周期,则,也是函数的周期;

是函数为奇函数的充分不必要条件。

从中任意抽取一个,恰好是真命题的概率为 ( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F为抛物线Cy2=2pxP0)的焦点,过F垂直于x轴的直线被C截得的弦的长度为4

1)求抛物线C的方程.

2)过点(m0),且斜率为1的直线被抛物线C截得的弦为AB,若点F在以AB为直径的圆内,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,实数满足

1)当函数的定义域为时,求的值域;

2)求函数关系式,并求函数的定义域

3)在(2)的结论中,对任意,都存在,使得成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的表格填上数字,设在第i行第j列所组成的数字为,则表格中共有51的填表方法种数为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,如果存在实数,且不同时成立),使得恒成立,则称函数映像函数”.

1)判断函数是否是映像函数,如果是,请求出相应的的值,若不是,请说明理由;

2)已知函数是定义在上的映像函数,且当时,.求函数)的反函数;

3)在(2)的条件下,试构造一个数列,使得当时,,并求时,函数的解析式,及的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于在某个区间上有意义的函数,如果存在一次函数使得对于任意的,有恒成立,则称函数是函数的一个弱渐近函数.

1)若函数是函数在区间上的一个弱渐近函数,求实数的取值范围;

2)证明:函数是函数在区间上的弱渐近函数;

3)试问:函数与函数(其中为自然对数的底数)在区间上是否存在相同的弱渐近函数?如果存在,请求出对应的弱渐近函数应满足的条件;如不存在,请说明理由.

查看答案和解析>>

同步练习册答案