精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴非负半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求曲线的极坐标方程及直线的直角坐标方程;

(2)设直线与曲线交于两点,求.

【答案】(Ⅰ)(Ⅱ)

【解析】试题分析:

(1)对于圆的方程,消去参数即可得到直角坐标方程,然后写出极坐标方程即可,对于直线的极坐标方程,将其转化为直角坐标方程即可;

(2)求解弦长的问题首先考查圆心到直线的距离,然后结合平面几何相关结合求解弦长即可.

试题解析:

(Ⅰ)圆 (为参数)得曲线的直角坐标方程:

所以它的极坐标方程为

直线的直角坐标方程为

(Ⅱ)直线的直角坐标方程:

圆心到直线的距离,圆的半径

弦长

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知过原点的动直线与圆相交于不同的两点

1求线段的中点的轨迹的方程;

2是否存在实数使得直线与曲线只有一个交点?若存在求出的取值范围;若不存在请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2cos2x+ sin2x﹣1.
(1)求f(x)的最大值及此时的x值
(2)求f(x)的单调减区间
(3)若x∈[﹣ ]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆和圆

(1)判断圆和圆的位置关系;

(2)过圆的圆心作圆的切线,求切线的方程;

(3)过圆的圆心作动直线交圆于A,B两点.试问:在以AB为直径的所有圆中,是否存在这样的圆,使得圆经过点?若存在,求出圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一企业从某生产线上随机抽取件产品,测量这些产品的某项技术指标值,得到的频率分布直方图如图.

(1)估计该技术指标值平均数

(2)在直方图的技术指标值分组中,以落入各区间的频率作为取该区间值的频率,若,则产品不合格,现该企业每天从该生产线上随机抽取件产品检测,记不合格产品的个数为,求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】春节来临,有农民工兄弟四人各自通过互联网订购回家过年的火车票,若订票成功即可获得火车票,即他们获得火车票与否互不影响.若获得火车票的概率分别是,其中,又成等比数列,且两人恰好有一人获得火车票的概率是.

(1)求的值;

(2)若是一家人且两人都获得火车票才一起回家,否则两人都不回家.设表示能够回家过年的人数,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△AOB中,∠AOB=60°,OA=2,OB=5,在线段OB上任取一点C,△AOC为钝角三角形的概率是(
A.0.2
B.0.4
C.0.6
D.0.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,上、下顶点分别是,点的中点,若,且.

(1)求椭圆的标准方程;

(2)过的直线与椭圆交于不同的两点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知=).

()当=2时,求函数在(1,)处的切线方程;

()若≥1时,≥0,求实数的取值范围.

查看答案和解析>>

同步练习册答案