精英家教网 > 高中数学 > 题目详情

【题目】给出下列命题:
①三点确定一个平面;
②在空间中,过直线外一点只能作一条直线与该直线平行;
③若平面α上有不共线的三点到平面β的距离相等,则α∥β;
④若直线a、b、c满足a⊥b、a⊥c,则b∥c.
其中正确命题的个数是

【答案】1个
【解析】①、不共线的三点确定一个平面,故①错.
②、不论是在空间中还是在平面内,过直线外一点有且只有一条直线与已知直线平行,故②正确.
③、如图所示:点A1、A、C到平面D1DBB1的距离都相等,但是平面A1ACC1与平面D1DBB1是相交关系,故③错.
④、如图所示:a⊥b、a⊥c,但是直线b、c相交,故④错.
所以答案是:1个

【考点精析】本题主要考查了平面与平面之间的位置关系的相关知识点,需要掌握两个平面平行没有交点;两个平面相交有一条公共直线才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点,动点在椭圆上,且使得的点恰有两个,动点到焦点的距离的最大值为.

(1)求椭圆的方程;

(2)如图,以椭圆的长轴为直径作圆,过直线上的动点作圆的两条切线,设切点分别为,若直线与椭圆交于不同的两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“真人秀”热潮在我国愈演愈烈,为了了解学生是否喜欢某“真人秀”节目,在某中学随机调查了110名学生,得到如下列联表:

总计

喜欢

40

20

60

不喜欢

20

30

50

总计

60

50

110

算得.

附表:

0.050

0.010

0.001

3.841

6.635

10.828

参照附表,得到的正确结论是( )

A. 在犯错误的概率不超过的前提下,认为“喜欢该节目与性别有关”

B. 在犯错误的概率不超过的前提下,认为“喜欢该节目与性别无关”

C. 以上的把握认为“喜欢该节目与性别有关”

D. 以上的把握认为“喜欢该节目与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在各棱长均为2的三棱柱中,侧面底面 .

(1) 求侧棱与平面所成角的正弦值的大小;

(2) 求异面直线间的距离;

(3) 已知点满足,在直线上是否存在点,使平面?若存在,请确定点的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是棱C1D1、C1C的中点.以下四个结论:
①直线AM与直线CC1相交;
②直线AM与直线BN平行;
③直线AM与直线DD1异面;
④直线BN与直线MB1异面.
其中正确结论的序号为
(注:把你认为正确的结论序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信已成为人们常用的社交软件,“微信运动”是微信里由腾讯开发的一个类似计步数据库的公众账号.手机用户可以通过关注“微信运动”公众号查看自己每天行走的步数,同时也可以和好友进行运动量的或点赞.现从小明的微信朋友圈内随机选取了40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下表:

步数

性别

02000

20015000

50018000

800110000

>10000

1

2

4

7

6

0

3

9

6

2

若某人一天的走路步数超过8000步被系统评定为“积极型”,否则被系统评定为“懈怠型”.

(1)利用样本估计总体的思想,试估计小明的所有微信好友中每日走路步数超过10000步的概率;

(2)根据题意完成下面的列联表,并据此判断能否有90%的把握认为“评定类型”与“性别”有关?

积极型

懈怠型

总计

总计

附:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员}.集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是(  )
A.AB
B.BC
C.A∩B=C
D.B∪C=A

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论的单调性;

(Ⅱ)设,若对 ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个几何体的三视图如图所示,则该几何体的表面积为(
A.38+2π
B.38﹣2π
C.38﹣π
D.38

查看答案和解析>>

同步练习册答案