【题目】给出下列命题:
①三点确定一个平面;
②在空间中,过直线外一点只能作一条直线与该直线平行;
③若平面α上有不共线的三点到平面β的距离相等,则α∥β;
④若直线a、b、c满足a⊥b、a⊥c,则b∥c.
其中正确命题的个数是 .
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点,动点在椭圆上,且使得的点恰有两个,动点到焦点的距离的最大值为.
(1)求椭圆的方程;
(2)如图,以椭圆的长轴为直径作圆,过直线上的动点作圆的两条切线,设切点分别为,若直线与椭圆交于不同的两点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“真人秀”热潮在我国愈演愈烈,为了了解学生是否喜欢某“真人秀”节目,在某中学随机调查了110名学生,得到如下列联表:
男 | 女 | 总计 | |
喜欢 | 40 | 20 | 60 |
不喜欢 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由算得.
附表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
参照附表,得到的正确结论是( )
A. 在犯错误的概率不超过的前提下,认为“喜欢该节目与性别有关”
B. 在犯错误的概率不超过的前提下,认为“喜欢该节目与性别无关”
C. 有以上的把握认为“喜欢该节目与性别有关”
D. 有
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在各棱长均为2的三棱柱中,侧面底面, .
(1) 求侧棱与平面所成角的正弦值的大小;
(2) 求异面直线间的距离;
(3) 已知点满足,在直线上是否存在点,使平面?若存在,请确定点的位置,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是棱C1D1、C1C的中点.以下四个结论:
①直线AM与直线CC1相交;
②直线AM与直线BN平行;
③直线AM与直线DD1异面;
④直线BN与直线MB1异面.
其中正确结论的序号为 .
(注:把你认为正确的结论序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】微信已成为人们常用的社交软件,“微信运动”是微信里由腾讯开发的一个类似计步数据库的公众账号.手机用户可以通过关注“微信运动”公众号查看自己每天行走的步数,同时也可以和好友进行运动量的或点赞.现从小明的微信朋友圈内随机选取了40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下表:
步数 性别 | 02000 | 20015000 | 50018000 | 800110000 | >10000 |
男 | 1 | 2 | 4 | 7 | 6 |
女 | 0 | 3 | 9 | 6 | 2 |
若某人一天的走路步数超过8000步被系统评定为“积极型”,否则被系统评定为“懈怠型”.
(1)利用样本估计总体的思想,试估计小明的所有微信好友中每日走路步数超过10000步的概率;
(2)根据题意完成下面的列联表,并据此判断能否有90%的把握认为“评定类型”与“性别”有关?
积极型 | 懈怠型 | 总计 | |
男 | |||
女 | |||
总计 |
附:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员}.集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是( )
A.AB
B.BC
C.A∩B=C
D.B∪C=A
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com