精英家教网 > 高中数学 > 题目详情
3.已知f(x)=$\left\{\begin{array}{l}{x+1(x<0)}\\{-x-1(x≥0)}\end{array}\right.$则不等式x+(x+1)•f(x-1)≤3的解集是(  )
A.{x|x≥-3}B.{x|x≥1}C.{x|-3≤x≤1}D.{x|x≥1或x≤-3}

分析 对x-1讨论,可得当x-1<0即x<1时,当x-1≥0即x≥1时,化简不等式,由二次不等式的解法,即可得到所求解集.

解答 解:f(x)=$\left\{\begin{array}{l}{x+1(x<0)}\\{-x-1(x≥0)}\end{array}\right.$,
当x-1<0即x<1时,x+(x+1)•f(x-1)≤3即为x+(x+1)x≤3,
解得-3≤x≤1,即为-3≤x<1;
当x-1≥0即x≥1时,x+(x+1)•f(x-1)≤3即为x+(x+1)(-x)≤3,
解得x≥1.
综上可得,原不等式的解集为[-3,+∞).
故选A.

点评 本题考查分段函数的运用:解不等式,注意讨论x-1的范围,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.${({ax+\frac{1}{ax}})^9}$的展开式中x3的系数为-84,则a=-1.(用数字填写答案)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在[0,2π]上,满足cosx≥$\frac{1}{2}$的x的取值范围是[0,$\frac{π}{3}$]∪[$\frac{5π}{3}$,2π].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知△ABC的外心为O,重心为G,且2|AB|+|AC|=6,则$\overrightarrow{AO}$•$\overrightarrow{AG}$的取值范围是[$\frac{6}{5},6$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合P={x|x2-3x+b=0},Q={x|(x+1)(x2+3x-4)=0}
(1)若b=4是否存在集合M使得P?M⊆Q?若存在,求出所有符合题意的集合M,若不存在,请说明理由
(2)P能否成为Q的一个子集?若能,求出b的值或取值范围,若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知tan2α-4=0,且α∈(-$\frac{π}{4}$,$\frac{π}{2}$),则2sin2α-3cos($\frac{π}{2}$+α)•sin($\frac{3π}{2}$-α)的值为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=$\left\{\begin{array}{l}{{2}^{-x},x≤0}\\{{x}^{\frac{1}{2}}-1,x>0}\end{array}\right.$,如果f(a)>1,求a的取值范围(-∞,0)∪(4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=ax(a>1),若f(x)在[-2,2]的最大值为16,则a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.一直线经过点P(-9,-1)被圆x2+y2+10x+10y+25=0截得的弦长为6,求此弦所在的直线方程.

查看答案和解析>>

同步练习册答案