精英家教网 > 高中数学 > 题目详情
(2013•宁波二模)在△ABC中,∠B=
π
6
,|
AB
|=3
3
,|
BC
|=6,设D是AB的中点,O是△ABC所在平面内的一点,且3
OA
+2
OB
+
OC
=
0
,则|
DO
|的值是(  )
分析:将等式3
OA
+2
OB
+
OC
=
0
中的向量
OC
移到右边,在两边都加上
OB
并化简整理得
OA
+
OB
=
1
3
CB
,因此
OA
+
OB
对应的向量
OE
BC
平行,可得点O在△ABC的中位线DF上,且到点D的距离等于
1
6
|
BC
|,再结合|
BC
|=6即可算出|
DO
|的值.
解答:解:∵3
OA
+2
OB
+
OC
=
0
  
∴3
OA
+2
OB
=
CO
,两边都加上
OB

得3(
OA
+
OB
)=
CB
,所以
OA
+
OB
=
1
3
CB

∵AB中点为D,可得
OA
+
OB
=2
OD

∴2
OD
=
1
3
CB
,可得
OD
=
1
6
CB

因此,点O在△ABC的中位线DF上,且满足|
OD
|=
1
6
|
BC
|=1
故选:B
点评:本题在△ABC中给出向量等式,求满足条件的点D到O点的距离,着重考查了三角形的中位线定理和向量的线性运算等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•宁波二模)设公比大于零的等比数列{an}的前n项和为Sn,且a1=1,S4=5S2,数列{bn}的前n项和为Tn,满足b1=1,Tn=n2bn,n∈N*
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设Cn=(Sn+1)(nbn-λ),若数列{Cn}是单调递减数列,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)设函数f(x)的导函数为f′(x),对任意x∈R都有f′(x)>f(x)成立,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)已知函数f(x)=a(x-1)2+lnx.a∈R.
(Ⅰ)当a=-
1
4
时,求函数y=f(x)的单调区间;
(Ⅱ)当x∈[1,+∞)时,函数y=f(x)图象上的点都在不等式组
x≥1
y≤x-1
所表示的区域内,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)如图是某学校抽取的n个学生体重的频率分布直方图,已知图中从左到右的前3个小组的频率之比为1:2:3,第3个小组的频数为18,则的值n是
48
48

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)已知两非零向量
a
b
,则“
a
b
=|
a
||
b
|”是“
a
b
共线”的(  )

查看答案和解析>>

同步练习册答案