精英家教网 > 高中数学 > 题目详情
17.点P(0,1)到直线l:3x-4y+1=0的距离为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 利用点到直线的距离公式直接求解.

解答 解:点P(0,1)到直线l:3x-4y+1=0的距离:
d=$\frac{|3×0-4×1+1|}{\sqrt{9+16}}$=$\frac{3}{5}$.
故选:C.

点评 本题考查点到直线的距离的求法,是基础题,解题时要认真审题,注意点到直线的距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设$\overrightarrow{a}$,$\overrightarrow{b}$是不共线的两个单位向量,已知$\overrightarrow{AB}$=2$\overrightarrow{a}$+k$\overrightarrow{b}$,$\overrightarrow{BC}$=$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{CD}$=$\overrightarrow{a}$-2$\overrightarrow{b}$.
(1)已知$\overrightarrow{a}$⊥$\overrightarrow{b}$,若$\overrightarrow{AB}$⊥$\overrightarrow{BC}$,求k的值;
(2)若A,B,D三点共线,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=logax,a>0,a≠1.
(1)若复数z=(a+2i)(1+i)(i为虚数单位)是纯虚数,求方程f(x)=-2的根;
(2)若f(x)=logax在区间[1,2]上有最大值1,求不等式f(x-1)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.有以下四个等式:0+$\overrightarrow{a}$=$\overrightarrow{a}$,0•$\overrightarrow{a}$=0,3•$\overrightarrow{0}$=0,$\overrightarrow{a}$-$\overrightarrow{a}$=0.其中正确的等式的个数为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直角坐标系中第四象限内的点集,用描述法可表示为{(x,y)|x>0且y<0}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,m),且$\overrightarrow{a}⊥\overrightarrow{b}$,则实数m=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列说法错误的是(  )
A.存在函数f(x)使得对任意的实数y,都有等式f(cosy)=cos2y成立
B.存在函数f(x)使得对任意的实数y,都有等式f(siny)=sin2y成立
C.存在函数f(x)使得对任意的实数y,都有等式f(cosy)=cos3y成立
D.存在函数f(x)使得对任意的实数y,都有等式f(siny)=sin3y成立

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.空间三条不同直线l,m,n和三个不同平面α,β,γ,给出下列命题:
①若m⊥l且n⊥l,则m∥n;
②若m∥l且n∥l,则m∥n;
③若m∥α且n∥α,则m∥n;
④若m⊥α,n⊥α,则m∥n;
⑤若α⊥γ,β⊥γ,则α∥β;
⑥若α∥γ,β∥γ,则α∥β;
⑦若α⊥l,β⊥l,则α∥β.
其中正确的个数为(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知复数z满足(z-1)(2+i)=5i,则|$\overline{z}$+i|=$\sqrt{5}$.

查看答案和解析>>

同步练习册答案