精英家教网 > 高中数学 > 题目详情
(2013•丰台区一模)在直角梯形ABCD中,AD∥BC,∠A=90°,AB=AD=1,BC=2,E是CD的中点,则
CD
BE
=
-1
-1
分析:以B为原点,以BC、AB所在直线为x、y轴,建立如图直角坐标系.则A(0,1),B(0,0),C(2,0),D(1,1),
从而得到E的坐标为(
3
2
1
2
),从而得到向量
CD
BE
的坐标,结合数量积的坐标公式可得的
CD
BE
值.
解答:解:以B为原点,以BC、AB所在直线为x、y轴,
建立如图所示直角坐标系,
可得A(0,1),B(0,0),C(2,0),D(1,1)
∵E是CD的中点,
∴点E的坐标为(
3
2
1
2

因此,
CD
=(-1,1),
BE
=(
3
2
1
2

可得
CD
BE
=(-1)×
3
2
+1×
1
2
=-1
故答案为:-1
点评:本题在直角梯形中求向量的数量积,着重考查了平面向量数量积的坐标运算公式和梯形的性质等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•丰台区一模)执行右边的程序框图所得的结果是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•丰台区一模)如果函数y=f(x)图象上任意一点的坐标(x,y)都满足方程 lg(x+y)=lgx+lgy,那么正确的选项是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•丰台区一模)已知a∈Z,关于x的一元二次不等式x2-6x+a≤0的解集中有且仅有3个整数,则所有符合条件的a的值之和是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•丰台区一模)已知变量x,y满足约束条件
x+y≤1
x+1≥0
x-y≤1
,则e2x+y的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•丰台区一模)设满足以下两个条件的有穷数列a1,a2,…,an为n(n=2,3,4,…,)阶“期待数列”:
①a1+a2+a3+…+an=0;
②|a1|+|a2|+|a3|+…+|an|=1.
(Ⅰ)分别写出一个单调递增的3阶和4阶“期待数列”;
(Ⅱ)若某2k+1(k∈N*)阶“期待数列”是等差数列,求该数列的通项公式;
(Ⅲ)记n阶“期待数列”的前k项和为Sk(k=1,2,3,…,n),试证:
(1)|Sk|≤
1
2
;     
(2)|
n
i=1
ai
i
|≤
1
2
-
1
2n

查看答案和解析>>

同步练习册答案