【题目】已知函数f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2为f(x)的极值点,求实数a的值;
(2)若y=f(x)在[3,+∞)上为增函数,求实数a的取值范围;
(3)当a=﹣ 时,方程f(1﹣x)= 有实根,求实数b的最大值.
【答案】
(1)解: = .…(1分)
因为x=2为f(x)的极值点,所以f'(2)=0.
即 ,解得a=0.
又当a=0时,f'(x)=x(x﹣2),从而x=2为f(x)的极值点成立
(2)解:因为f(x)在区间[3,+∞)上为增函数,
所以 在区间[3,+∞)上恒成立.①当a=0时,f'(x)=x(x﹣2)≥0在[3,+∞)上恒成立,所以f(x)在[3,+∞)上为增函数,故a=0符合题意.
②当a≠0时,由函数f(x)的定义域可知,必须有2ax+1>0对x≥3恒成立,故只能a>0,
所以2ax2+(1﹣4a)x﹣(4a2+2)≥0对x∈[3,+∞)上恒成立.
令g(x)=2ax2+(1﹣4a)x﹣(4a2+2),其对称轴为 ,
因为a>0所以 ,从而g(x)≥0在[3,+∞)上恒成立,只要g(3)≥0即可,
因为g(3)=﹣4a2+6a+1≥0,
解得 .
因为a>0,所以 .
由①可得,a=0时,符合题意;
综上所述,a的取值范围为[0, ]
(3)解:若 时,方程 x>0 可化为, .
问题转化为b=xlnx﹣x(1﹣x)2+x(1﹣x)=xlnx+x2﹣x3在(0,+∞)上有解,
即求函数g(x)=xlnx+x2﹣x3的值域.
以下给出两种求函数g(x)值域的方法:
方法1:因为g(x)=x(lnx+x﹣x2),令h(x)=lnx+x﹣x2(x>0),
则 ,
所以当0<x<1,h′(x)>0,从而h(x)在(0,1)上为增函数,
当x>1,h′(x)<0,从而h(x')在(1,+∞上为减函数,
因此h(x)≤h(1)=0.
而x>1,故b=xh(x)≤0,
因此当x=1时,b取得最大值0.
方法2:因为g(x)=x(lnx+x﹣x2),所以g'(x)=lnx+1+2x﹣3x2.
设p(x)=lnx+1+2x﹣3x2,则 .
当 时,p'(x)>0,所以p(x)在 上单调递增;
当 时,p'(x)<0,所以p(x)在 上单调递减;
因为p(1)=0,故必有 ,又 ,
因此必存在实数 使得g'(x0)=0,
∴当0<x<x0时,g′(x)<0,所以g(x)在(0,x0)上单调递减;
当x0<x<1,g′(x)>0,所以,g(x)在(x0,1)上单调递增;
又因为 ,
当x→0时,lnx+ <0,则g(x)<0,又g(1)=0.
因此当x=1时,b取得最大值0
【解析】(1)先对函数求导,由x=2为f(x)的极值点,可得f'(2)=0,代入可求a(2)由题意可得 在区间[3,+∞)上恒成立,①当a=0时,容易检验是否符合题意,②当a≠0时,由题意可得必须有2ax+1>0对x≥3恒成立,则a>0,从而2ax2+(1﹣4a)x﹣(4a2+2)≥0对x∈[3,+∞0上恒成立.考查函数g(x)=2ax2+(1﹣4a)x﹣(4a2+2),结合二次函数的性质可求(3)由题意可得 .问题转化为b=xlnx﹣x(1﹣x)2+x(1﹣x)=xlnx+x2﹣x3在(0,+∞)上有解,即求函数g(x)=xlnx+x2﹣x3的值域. 方法1:构造函数g(x)=x(lnx+x﹣x2),令h(x)=lnx+x﹣x2(x>0),对函数h(x)求导,利用导数判断函数h(x)的单调性,进而可求
方法2:对函数g(x)=x(lnx+x﹣x2)求导可得g'(x)=lnx+1+2x﹣3x2 . 由导数知识研究函数p(x)=lnx+1+2x﹣3x2 , 的单调性可求函数g(x)的零点,即g'(x0)=0,从而可得函数g(x)的单调性,结合 ,可知x→0时,lnx+ <0,则g(x)<0,又g(1)=0可求b的最大值
科目:高中数学 来源: 题型:
【题目】为响应市政府“绿色出行”的号召,王老师每个工作日上下班由自驾车改为选择乘坐地铁或骑共享单车这两种方式中的一种出行.根据王老师从2017年3月到2017年5月的出行情况统计可知,王老师每次出行乘坐地铁的概率是0.4,骑共享单车的概率是0.6.乘坐地铁单程所需的费用是3元,骑共享单车单程所需的费用是1元.记王老师在一个工作日内上下班所花费的总交通费用为X元,假设王老师上下班选择出行方式是相互独立的.
(I)求X的分布列和数学期望 ;
(II)已知王老师在2017年6月的所有工作日(按22个工作日计)中共花费交通费用110元,请判断王老师6月份的出行规律是否发生明显变化,并依据以下原则说明理由.
原则:设 表示王老师某月每个工作日出行的平均费用,若 ,则有95%的把握认为王老师该月的出行规律与前几个月的出行规律相比有明显变化.(注: )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数的最小值为3,且.
求函数的解析式;
(2)若偶函数(其中),那么, 在区间上是否存在零点?请说明理由.
【答案】(1)(2)存在零点
【解析】试题分析:(1)待定系数法,己知函数类型为二次函数,又知f(-1)=f(3),所以对称轴是x=1,且函数最小值f(1)=3,所设函数,且,代入f(-1)=11,可解a。
(2)由题意可得,代入,由和根的存在性定理, 在区间(1,2)上存在零点。
试题解析:(1)因为是二次函数,且
所以二次函数图像的对称轴为.
又的最小值为3,所以可设,且
由,得
所以
(2)由(1)可得,
因为,
所以在区间(1,2)上存在零点.
【点睛】
(1)对于求己知类型函数的的解析式,常用待定系数法,由于二次函数的表达式形式比较多,有一般式,两点式,顶点式,由本题所给条件知道对称轴与顶点坐标,所以设顶点式。
(2)对于判定函数在否存在零点问题,一般解决此类问题的三步曲是:①先通过观察函数图象再估算出根所在的区间;②根据方程根的存在性定理证明根是存在的;③最后根据函数的性质证明根是唯一的.本题给了区间,可直接用根的存在性定理。
【题型】解答题
【结束】
20
【题目】《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过3500元的部分不纳税,超过3500元的部分为全月税所得额,此项税款按下表分段累计计算:
全月应纳税所得额 | 税率 |
不超过1500元的部分 | |
超过1500元至4500元的部分 | |
超过4500元至9000元的部分 |
(1)已知张先生的月工资,薪金所得为10000元,问他当月应缴纳多少个人所得税?
(2)设王先生的月工资,薪金所得为,当月应缴纳个人所得税为元,写出与的函数关系式;
(3)已知王先生一月份应缴纳个人所得税为303元,那么他当月的工资、薪金所得为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某港口水的深度y(m)是时间t(0≤t≤24,单位:h)的函数,记作y=f(t).下面是某日水深的数据:
t/h | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y/m | 10 | 13 | 10 | 7 | 10 | 13 | 10 | 7 | 10 |
经长期观察,y=f(t)的曲线可以近似地看成函数的图象.一般情况下,船舶航行时,船底离海底的距离为5m或5m以上时认为是安全的(船舶停靠时,船底只需不碰海底即可).
(1)求y与t满足的函数关系式;
(2)某船吃水深度(船底离水面的距离)为6.5m,如果该船希望在同—天内安全进出港,请问该船在什么时间段能够安全进港?它同一天内最多能在港内停留多少小时?(忽略进 出港所需的时间).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】王先生家住 A 小区,他工作在 B 科技园区,从家开车到公司上班路上有 L1 , L2 两条路线(如图),L1 路线上有 A1 , A2 , A3 三个路口,各路口遇到红灯的概率均为 ;L2 路线上有 B1 , B2 两个路.各路口遇到红灯的概率依次为 , .若走 L1 路线,王先生最多遇到 1 次红灯的概率为;若走 L2 路线,王先生遇到红灯次数 X 的数学期望为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋内装有6个球,每个球上都记有从1到6的一个号码,设号码为n的球重克,这些球等可能地从袋里取出(不受重量、号码的影响).
(1)如果任意取出1个球,求其重量大于号码数的概率;
(2)如果不放回地任意取出2个球,求它们重量相等的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小王、小张两位同学玩投掷正四面体(每个面都为等边三角形的正三棱锥)骰子(骰子质地均匀,各面上的点数分别为)游戏,规则:小王现掷一枚骰子,向下的点数记为,小张后掷一枚骰子,向下的点数记为,
(1)在直角坐标系中,以为坐标的点共有几个?试求点落在直线上的概率;
(2)规定:若,则小王赢,若,则小张赢,其他情况不分输赢,试问这个游戏公平吗?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了了解该校学生对于某项运动的爱好是否与性别有关,通过随机抽查110名学生,得到如下2×2的列联表:
喜欢该项运动 | 不喜欢该项运动 | 总计 | |
男 | 40 | 20 | 60 |
女 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由公式K2= ,算得K2≈7.61
附表:
p(K2≥k0) | 0.025 | 0.01 | 0.005 |
k0 | 5.024 | 6.635 | 7.879 |
参照附表,以下结论正确是( )
A.有99.5%以上的把握认为“爱好该项运动与性别有关”
B.有99.5%以上的把握认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com