精英家教网 > 高中数学 > 题目详情

【题目】已知直线l过抛物线E:y2=2px(p>0)的焦点F且与x垂直,l与E所围成的封闭图形的面积为24,若点P为抛物线E上任意一点,A(4,1),则|PA|+|PF|的最小值为( )
A.6
B.4+2
C.7
D.4+2

【答案】C
【解析】解:由抛物线E:y2=2px(p>0),可得y=
由抛物线E:y2=2px(p>0),x= ,可得y=±p,
∴l与E所围成的封闭图形的面积S=
∴p=6,
∴y2=12x,
抛物线C:y2=12x的准线为x=﹣3.
设点P在准线上的射影为D,
则根据抛物线的定义可知|PF|=|PD|,
要求|PA|+|PF|取得最小值,即求|PA|+|PD|取得最小.
当D,P,A三点共线时,|PA|+|PD|最小,为4﹣(﹣3)=7.
故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+a|+|x+ |(a>0)
(1)当a=2时,求不等式f(x)>3的解集;
(2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市8所中学生参加比赛的得分用茎叶图表示(如图)其中茎为十位数,叶为个位数,则这组数据的平均数和方差分别是(

A.91 5.5
B.91 5
C.92 5.5
D.92 5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,CD是∠ACB的平分线,△ACD的外接圆交BC于点E,AB=2AC,

(1)求证:BE=2AD;
(2)求函数AC=1,BC=2时,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥的四个顶点均在半径为2的球面上,且满足,则三棱锥的侧面积的最大值为(

A. 2 B. 4 C. 8 D. 16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知多面体ABC﹣A1B1C1中,底面△ABC为等边三角形,边长为2,AA1⊥平面ABC,四边形A1ACC1为直角梯形,CC1与平面ABC所成的角为 ,AA1=1

(1)若P为AB的中点,求证:A1P∥平面BC1C;
(2)求二面角A1﹣BC1﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以原点O为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的参数方程是 (θ为参数),曲线C与l的交点的极坐标为(2, )和(2, ),
(1)求直线l的普通方程;
(2)设P点为曲线C上的任意一点,求P点到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 (a>b>0)右顶点与右焦点的距离为 ﹣1,短轴长为2
(1)求椭圆的方程;
(2)过左焦点F的直线与椭圆分别交于A、B两点,若三角形OAB的面积为 ,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 )的左、右焦点分别为 的直线交双曲线右支于 两点 则双曲线的离心率为__________

查看答案和解析>>

同步练习册答案