精英家教网 > 高中数学 > 题目详情

如果有穷数列为正整数)满足.即,我们称其为“对称数列“例如,数列与数列都是“对称数列”.设是项数为的“对称数列”,并使得,…,依次为该数列中连续的前项,则数列的前项和可以是
    ⑵       (3)
其中正确命题的个数为(    )

A.0B.1 C.2D.3

C

解析考点:数列的应用.
专题:新定义.
分析:由题意由于新定义了对称数列,且已知数列bn是项数为不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中前连续的m项,故数列bn的前2010项利用等比数列的前n项和定义直接可求(1)(2)的正确与否;对于(3),先从等比数列的求和公式求出任意2m项的和在利用减法的到需要的前201008项的和,即可判断.
解答:解:因为数列bn是项数为不超过2m(m>1,m∈N*的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中前连续的m项,故数列bn的前2010项可以是:①1,2,22,23…,21005,21005,…,22,1.
所以前2010项和S2010=2×=2(21005-1),所以(1)错(2)对;
对于 (3)1,2,22,…2m-2,2m-1,2 m-2,…,2,1,1,2,…2m-2,2m-1,2 m-2,…,2,1…m-1=2n+1,利用等比数列的求和公式可得:S2010=2m+1-22m-2010-1,故(3)正确.
故为C
点评:本题以新定义对称数列为切入点,运用的知识都是数列的基本知识:等差数列的通项及求和公式,等比数列的通项及求和公式,还体现了分类讨论在解题中的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(07年上海卷文)(14分)如果有穷数列为正整数)满足条件,…,,即),我们称其为“对称数列”.

例如,数列与数列都是“对称数列”.

(1)设是7项的“对称数列”,其中是等差数列,且.依次写出的每一项;

       (2)设项的“对称数列”,其中是首项为,公比为的等比数列,求各项的和

      (3)设项的“对称数列”,其中是首项为,公差为的等差数列.求项的和

查看答案和解析>>

科目:高中数学 来源: 题型:

 (08年扬州中学)  如果有穷数列为正整数)满足条件,…,,即),我们称其为“对称数列”.例如,由组合数组成的数列就是“对称数列”.

(1)设是项数为7的“对称数列”,其中是等差数列,且.依次写出的每一项;

(2)设是项数为(正整数)的“对称数列”,其中是首项为,公差为的等差数列.记各项的和为.当为何值时,取得最大值?并求出的最大值;

    (3)对于确定的正整数,写出所有项数不超过的“对称数列”,使得依次是该数列中连续的项;当时,求其中一个“对称数列”前项的和

查看答案和解析>>

科目:高中数学 来源:2010年湖南省衡阳八中高二上学期期中考试数学试卷 题型:解答题

(本小题满分10分)如果有穷数列为正整数)满足条件,…,,即),我们称其为“对称数列”.
例如,数列与数列都是“对称数列”.
(1)设是7项的“对称数列”,其中是等差数列,且.依次写出的每一项;
(2)设项的“对称数列”,其中是首项为,公比为的等比数列,求各项的和
(3)设项的“对称数列”,其中是首项为,公差为的等差数列.求项的和

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省高三下学期期初考试数学理卷 题型:选择题

如果有穷数列为正整数)满足.即,我们称其为“对称数列“例如,数列与数列都是“对称数列”.设是项数为的“对称数列”,并使得,…,依次为该数列中连续的前项,则数列的前项和可以是

     ⑵        (3)

其中正确命题的个数为                                             (     )

       A.0                     B.1                       C.2                     D.3

 

查看答案和解析>>

同步练习册答案