精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)=sin(2x+φ)(|φ|< )向左平移 个单位后是奇函数,则函数f(x)在[0, ]上的最小值为

【答案】-
【解析】解:把函数y=sin(2x+φ)的图象向左平移 个单位得到函数y=sin(2x+ +φ)的图象,
∵函数y=sin(2x+ +φ)为奇函数,故 +φ=kπ,
∵|φ|< ,故φ的最小值是﹣
∴函数为y=sin(2x﹣ ).x∈[0, ],
∴2x﹣ ∈[﹣ ],
x=0时,函数取得最小值为﹣
所以答案是:﹣
【考点精析】关于本题考查的函数y=Asin(ωx+φ)的图象变换,需要了解图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:三棱锥P﹣ABC中,PA⊥底面ABC,若底面ABC是边长为2的正三角形,且PB与底面ABC所成的角为 .若M是BC的中点,求:

(1)三棱锥P﹣ABC的体积;
(2)异面直线PM与AC所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=3,a2=5,{an}的前n项和Sn , 且满足Sn+Sn2=2Sn1+2n1(n≥3).
(1)试求数列{an}的通项公式;
(2)令bn= ,Tn是数列{bn}的前n项和,证明:Tn
(3)证明:对任意给定的m∈(0, ),均存在n0∈N+ , 使得当n≥n0时,(2)中的Tn>m恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题共13分)

如图,正方形ABCD和四边形ACEF所在的平面互相垂直。

EF//ACAB=,CE=EF=1

)求证:AF//平面BDE

)求证:CF⊥平面BDF;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx﹣ax﹣3(a≠0).
(1)讨论f(x)的单调性;
(2)若f(x)+(a+1)x+4﹣e≤0对任意x∈[e,e2]恒成立,求实数a的取值范围(e为自然常数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形,且,平面底面的中点, 是棱的中点, ,.

(1)求证:平面BDM; (2)D到面PBC距离;

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}是等差数列,若 <﹣1,且它的前n项和Sn有最大值,那么当Sn取的最小正值时,n=(
A.11
B.17
C.19
D.21

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣1|.
(1)若不等式f(x+ )≥2m+1(m>0)的解集为(﹣∞,﹣2]∪[2,+∞),求实数m的值;
(2)若不等式f(x)≤2y+ +|2x+3|,对任意的实数x,y∈R恒成立,求实数a的最小值.

查看答案和解析>>

同步练习册答案