精英家教网 > 高中数学 > 题目详情
设函数
(1)写出函数f(x)的最小正周期及单调递减区间;
(2)当时,函数f(x)的最大值与最小值的和为,求a的值.
【答案】分析:(1)根据二倍角公式,和辅助角公式,我们易将函数的解析化简为正弦型函数的形式,进而求出函数f(x)的最小正周期及单调递减区间;
(2)当时,根据函数f(x)的最大值与最小值的和为,我们可构造出关于a的方程,解方程即可得到a的值.
解答:解(1),(2分)
∴T=π.(4分)

故函数f(x)的单调递减区间是.                 (6分)
(2)∵,∴.∴.(8分)
时,原函数的最大值与最小值的和=,∴a=0(12分)
点评:本题考查的知识点是三角函数的恒等变换及化简求值,三角函数的周期性及其求法,正弦函数的值域,正弦函数的单调性,其中根据二倍角公式,和辅助角公式,化简函数的形式,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f-1(x)能确定数列bn,bn=f-1(n)若对于任意n∈N*都有bn=an,则称数列{bn}是数列{an}的“自反函数列”
(1)设函数f(x)=
px+1
x+1
,若由函数f(x)确定的数列{an}的自反数列为{bn},求an
(2)已知正整数列{cn}的前项和sn=
1
2
(cn+
n
cn
).写出Sn表达式,并证明你的结论;
(3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=
-1
anSn2
,Dn是数列{dn}的前n项和,且Dn>loga(1-2a)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•遂宁二模)设函数f(x)的定义域为D,若存在非零实数,使得对于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),则称f(x)为M上的l高调函数,现给出下列命题:
①函数f(x)=(
12
)x
为R上的1高调函数;
②函数f (x)=sin 2x为R上的高调函数;
③如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞);
④如果定义域为R的函教f (x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是[一1,1].
其中正确的命题是
②③④
②③④
 (写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=.

(1)求图象的开口方向、对称轴、顶点坐标、与x轴的交点坐标;

(2)求函数的单调区间、最值和零点;

(3)设图象与x轴相交于(x1,0)、(x2,0),不求出根,求|x1-x2|;

(4)已知f(-)=,不计算函数值,求f(-);

(5)不计算函数值,试比较f(-)与f(-)的大小;

(6)写出使函数值为负数的自变量x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

某种商品在30天内每件的销售价格P(元)与时间t(天)      的函数

关系用如图所示的两条直线段表示:

又该商品在30天内日销售量Q(件)与时间t(天)之间的关系

如下表所示:

第t天

5

15

20

30

Q/件

35

25

20

10

(1)根据题设条件,写出该商品每件的销售价格P与时间t的函

数关系式;并确定日销售量Q与时间t的一个函数关系式;

(2),试问30天中第几天日销售金额最大?最大金额为多少元?    

(日销售金额=每件的销售价格×日销售量).

查看答案和解析>>

科目:高中数学 来源:2009年北京市宣武区高考数学一模试卷(文科)(解析版) 题型:解答题

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f-1(x)能确定数列bn,bn=f-1(n)若对于任意n∈N*都有bn=an,则称数列{bn}是数列{an}的“自反函数列”
(1)设函数f(x)=,若由函数f(x)确定的数列{an}的自反数列为{bn},求an
(2)已知正整数列{cn}的前项和sn=(cn+).写出Sn表达式,并证明你的结论;
(3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=,Dn是数列{dn}的前n项和,且Dn>loga(1-2a)恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案