精英家教网 > 高中数学 > 题目详情
已知抛物线的顶点在原点,焦点为圆的圆心
(1)求此抛物线方程;
(2)如图,是否存在过圆心的直线与抛物线、圆顺次交于且使得成等差数列,若存在,求出它的方程;若不存在,说明理由.
(1);    (2)
(1)圆的方程为,圆心坐标为,故所求抛物线的方程为
  (2)由已知
存在.则由圆心的坐标知,
①若垂直于轴,设的方程为,代入,得
不存在这样的直线方程.
②若不垂直于轴,设的方程为,记

抛物线的准线方程为
由抛物线定义,得

时,经检验方程“”的存在这样的直线,其方程为:
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图,分别是椭圆ab>0)的左右焦点,M为椭圆上一点,垂直于x轴,且OM与椭圆长轴和短轴端点的连线AB平行。
(1)求椭圆的离心率;
(2)若G为椭圆上不同于长轴端点任一点,求∠取值范围;
(3)过且与OM垂直的直线交椭圆于PQ
求椭圆的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,抛物线的顶点在坐标原点,且开口向右,点ABC在抛物线上,△ABC的重心F为抛物线的焦点,直线AB的方程为
(Ⅰ)求抛物线的方程;
(Ⅱ)设点M为某定点,过点M的动直线l与抛物线相交于PQ两点,试推断是否存在定点M,使得以线段PQ为直径的圆经过坐标原点?若存在,求点M的坐标;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆长轴长,焦距,过焦点作一直线,交椭圆于两点.设,当取何值时,等于椭圆短轴的长?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求证:双曲线上任何一点到两条渐近线的距离之积为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,为椭圆的左、右两个焦点,直线与椭圆交于两点,已知椭圆中心点关于的对称点恰好落在的左准线上.
⑴求准线的方程;
⑵已知成等差数列,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上,右准线的方程为,倾斜角为的直线交椭圆两点,且的中点坐标为,设为椭圆的右顶点,为椭圆上两点,且三者的平方成等差数列,则直线斜率之积的绝对值是否为定值,若是,请求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

动点到直线的距离与它到点的距离之比为,求动点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知过点(0,1)的直线l与曲线C交于两个不同点MN。求曲线C在点MN处切线的交点轨迹。

查看答案和解析>>

同步练习册答案