A. | (-∞,2) | B. | $(-∞,\frac{1}{2}]$ | C. | $[\frac{1}{2},2)$ | D. | (0,2) |
分析 由题意利用函数的单调性的性质,可得$\left\{\begin{array}{l}{a-2<0}\\{\frac{1}{2}-1≤a-2+1}\end{array}\right.$,由此求得a的范围.
解答 解:函数$f(x)=\left\{{\begin{array}{l}{(a-2)x+1,x<1}\\{{{(\frac{1}{2})}^x}-1,x≥1}\end{array}}\right.$是R上的单调递减函数,∴$\left\{\begin{array}{l}{a-2<0}\\{\frac{1}{2}-1≤a-2+1}\end{array}\right.$,
求得$\frac{1}{2}$≤a<2,则实数a的范围是[$\frac{1}{2}$,2),
故选:C.
点评 本题主要函数的单调性的性质,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{32π}{3}$ | B. | $\frac{4π}{3}$ | C. | 2π | D. | 4π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{4}{3}$ | B. | $\frac{4}{9}$ | C. | $\frac{16}{9}$ | D. | $\frac{26}{9}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com