精英家教网 > 高中数学 > 题目详情
20.已知函数$f(x)=\left\{{\begin{array}{l}{(a-2)x+1,x<1}\\{{{(\frac{1}{2})}^x}-1,x≥1}\end{array}}\right.$是R上的单调递减函数,则实数a的取值范围是(  )
A.(-∞,2)B.$(-∞,\frac{1}{2}]$C.$[\frac{1}{2},2)$D.(0,2)

分析 由题意利用函数的单调性的性质,可得$\left\{\begin{array}{l}{a-2<0}\\{\frac{1}{2}-1≤a-2+1}\end{array}\right.$,由此求得a的范围.

解答 解:函数$f(x)=\left\{{\begin{array}{l}{(a-2)x+1,x<1}\\{{{(\frac{1}{2})}^x}-1,x≥1}\end{array}}\right.$是R上的单调递减函数,∴$\left\{\begin{array}{l}{a-2<0}\\{\frac{1}{2}-1≤a-2+1}\end{array}\right.$,
求得$\frac{1}{2}$≤a<2,则实数a的范围是[$\frac{1}{2}$,2),
故选:C.

点评 本题主要函数的单调性的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=loga(x+1)-loga(1-x),(a>0且a≠1).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性,并说明理由;
(3)设$a=\frac{1}{3}$,解不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知底面边长为1,侧棱长为$\sqrt{2}$的正四棱柱的各顶点均在同一个球面上,则该球的表面积为(  )
A.$\frac{32π}{3}$B.$\frac{4π}{3}$C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.一个几何体的侧面都是等边三角形,则这个几何体可能是正四面体(答案不唯一)..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$\overrightarrow a=(\sqrt{3}sinx,\;m+cosx)$,$\overrightarrow b=(cosx,-m+cosx)$,且$f(x)=\vec a•\vec b$.
(1)求函数f(x)的解析式;并求其最小正周期和对称中心.
(2)当$x∈[{-\frac{π}{6},\frac{π}{3}}]$时,f(x)的最小值是-4,求此时函数f(x)的最大值,并求出相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.不等式:2x+$\frac{1}{x}$≥-3的解集是{x|x>0或-1≤x≤$-\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.离心率e=$\frac{1}{2}$,一个焦点是F(3,0)的椭圆标准方程为$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{27}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数y=-2sin(3x-$\frac{π}{6}$)的周期,值域,求函数的对称中心,对称轴,单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.24•6-2+(-2014)0+${9}^{-\frac{1}{2}}$=(  )
A.$\frac{4}{3}$B.$\frac{4}{9}$C.$\frac{16}{9}$D.$\frac{26}{9}$

查看答案和解析>>

同步练习册答案