【题目】已知函数,.
(Ⅰ)若在上是增函数,求实数的取值范围;
(Ⅱ)讨论函数的极值,并说明理由;
(Ⅲ)若有两个极值点,,求证:函数有三个零点.
【答案】(Ⅰ);(Ⅱ)当时,无极值;当时,存在一个极大值和一个极小值;(Ⅲ)见解析
【解析】
(Ⅰ)利用得;利用导数求得的最小值,则;(Ⅱ)由(Ⅰ)知,函数单调递增,无极值;当,可证得有两根,即有两根,从而可得函数的单调性,进而确定有一个极大值和一个极小值;(Ⅲ)由(Ⅱ)知且;利用和表示,代入函数中,可表示出和;根据和设,通过导数可验证出单调递减,进而求得,,结合图象可证得结论.
(Ⅰ)由得:
在上是增函数 在上恒成立
即:在上恒成立
设,则
当时,;当时,
即在上单调递减;在上单调递增
即的取值范围为:
(Ⅱ)由(Ⅰ)知:当时,在上是增函数,此时无极值;
当时,令,即
时,;;时,
有两个根,设两根为,且
可知:和时,;时,
即在,上单调递增;在上单调递减
在处取得极大值;在处取得极小值
综上所述:当时,无极值;当时,存在一个极大值和一个极小值
(Ⅲ)由(Ⅱ)知,有两个极值点,,则,且
;
又
令,则
则在上恒成立,即在上单调递减
又 时,;时,
,
当时,;当时,
可得大致图象如下:
有三个零点
科目:高中数学 来源: 题型:
【题目】如图,椭圆的左、右顶点分别为A、B,双曲线以A、B为顶点,焦距为,点P是上在第一象限内的动点,直线AP与椭圆相交于另一点Q,线段AQ的中点为M,记直线AP的斜率为为坐标原点.
(1)求双曲线的方程;
(2)求点M的纵坐标的取值范围;
(3)是否存在定直线使得直线BP与直线OM关于直线对称?若存在,求直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线(为参数),将曲线上所有点横坐标缩短为原来的,纵坐标不变,得到曲线,过点且倾斜角为的直线与曲线交于、两点.
(1)求曲线的参数方程和的取值范围;
(2)求中点的轨迹的参数方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,圆,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.
(1)求曲线C的方程;
(2)设不经过点的直线l与曲线C相交于A,B两点,直线QA与直线QB的斜率均存在且斜率之和为-2,证明:直线l过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的最小正周期为,将函数的图像向右平移个单位长度,再向下平移个单位长度,得到函数的图像.
(1)求函数的单调递增区间;
(2)在锐角中,角的对边分别为,若,,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】商家通常依据“乐观系数准则”确定商品销售价格,及根据商品的最低销售限价a,最高销售限价b(b>a)以及常数x(0<x<1)确定实际销售价格c=a+x(b﹣a),这里,x被称为乐观系数.
经验表明,最佳乐观系数x恰好使得(c﹣a)是(b﹣c)和(b﹣a)的等比中项,据此可得,最佳乐观系数x的值等于 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线x=﹣2上有一动点Q,过点Q作直线l,垂直于y轴,动点P在l1上,且满足(O为坐标原点),记点P的轨迹为C.
(1)求曲线C的方程;
(2)已知定点M(,0),N(,0),点A为曲线C上一点,直线AM交曲线C于另一点B,且点A在线段MB上,直线AN交曲线C于另一点D,求△MBD的内切圆半径r的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com