精英家教网 > 高中数学 > 题目详情
20.设双曲线Γ:x2-$\frac{{y}^{2}}{8}$=1的左右两个焦点分别为F1,F2,A为双曲线Γ的左顶点,直线l过右焦点F2且与双曲线Γ交于M,N两点,若AM,AN的斜率分别为k1,k2,且k1+k2=-$\frac{1}{2}$,则直线l的方程为y=-8(x-3)..

分析 设出直线方程与双曲线方程联立,利用韦达定理及k1+k2=2,求直线l的斜率,即可求出直线l的方程.

解答 解:设直线方程为l:y=k(x-3),M(x1,y1),N(x2,y2
联立方程组得(8-8k2)x2+6k2x-9k2-8=0
∴x1+x2=-$\frac{6{k}^{2}}{8-8{k}^{2}}$,x1x2=$\frac{-9{k}^{2}-8}{8-8{k}^{2}}$
∴k1+k2=$\frac{{y}_{1}}{{x}_{1}+1}$+$\frac{{y}_{2}}{{x}_{1}+1}$=$\frac{2k({x}_{1}{x}_{2}-{x}_{2}-{x}_{1}-3)}{{x}_{1}{x}_{2}+{x}_{1}{+x}_{2}+1}$=-$\frac{1}{2}$,
代入解得k=-8,
∴直线l的方程是y=-8(x-3).
故答案为y=-8(x-3).

点评 本题考查双曲线的几何性质,考查双曲线的标准方程,考查直线与双曲线的位置关系,考查韦达定理的运用,正确运用韦达定理是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知命题p:∅⊆{0},q:3∈{1,2}由它们构成“p∨q”,“p∧q”,“¬p”三个命题中,真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.近年来我国电子商务行业迎来发展的新机遇.2016年双十一期间,某购物平台的销售业绩高达516亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.7,对服务的好评率为0.8,其中对商品和服务都做出好评的交易为120次.
(Ⅰ)先完成关于商品和服务评价的2×2列联表,再判断能否在犯错误的概率不超过0.005的前提下,认为商品好评与服务好评有关?
(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:
①求对商品和服务全好评的次数X的分布列;
②求X的数学期望和方差.
附临界值表:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.897 10.828
K2的观测值:$k=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
关于商品和服务评价的2×2列联表:
对服务好评对服务不满意合计
对商品好评a=120b=40160
对商品不满意c=20d=2040
合计14060n=200

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)=x+sinx,则不等式$\frac{f(lnx)-f(ln\frac{1}{x})}{2}$<f(1)的解集是(0,e).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知过定点P(-4,0)的直线l与曲线y=$\sqrt{4-{x}^{2}}$相交于A,B两点,O为坐标原点,当△AOB的面积最大时,直线l的斜率为(  )
A.$\frac{\sqrt{2}}{4}$B.2C.$\frac{\sqrt{7}}{7}$D.$\frac{\sqrt{14}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数$f(x)=lnx+\frac{1}{2}{x^2}-({b-1})x$
(Ⅰ)若b=2,求函数f(x)在点$P({1,-\frac{1}{2}})$处的切线方程;
(Ⅱ)若函数f(x)存在单调递减区间,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=\frac{3}{2}cosα\\ y=sinα\end{array}\right.$(α为参数),M为C1上的动点,P点满足$\overrightarrow{OP}$=2$\overrightarrow{OM}$,点P的轨迹为曲线C2
(Ⅰ)求C2的普通方程;
(Ⅱ) 设点(x,y)在曲线C2上,求x+2y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,M,N分别为其左右顶点.过F2的直线l与椭圆相交于A,B两点.当直线l与x轴垂直时,四边形AMBN的面积等于2,且满足|$\overrightarrow{M{F}_{2}}$|=$\sqrt{2}$|$\overrightarrow{AB}$|+|$\overrightarrow{{F}_{2}N}$|.
(1)求此椭圆的方程;
(2)当直线l绕着焦点F2旋转不与x轴重合时,求$\overrightarrow{AM}$•$\overrightarrow{AN}$+$\overrightarrow{BM}$•$\overrightarrow{BN}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2$\sqrt{2}$,且经过点(-2,0).过点D(0,-2)的斜率为k的直线l与椭圆交于A,B两点,与x轴交于P点,点A关于x轴的对称点C,直线BC交x轴于点Q.
(Ⅰ)求k的取值范围;
(Ⅱ)试问:|OP|?|OQ|是否为定值?若是,求出定值;否则,说明理由.

查看答案和解析>>

同步练习册答案