精英家教网 > 高中数学 > 题目详情

已知直三棱柱的底面积为4。D、E、F分别是侧棱上的点,且AD=1,BE=2,CF=3,则多面体的体积等于(    ).

A.8        B.10       C.12       D.16 w.w.w.k.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知直四棱柱ABCD-A1B1C1D1的底面是边长为2、∠ADC=120°的菱形,Q是侧棱DD1(DD1
2
2
)延长线上的一点,过点Q、A1、C1作菱形截面QA1PC1交侧棱BB1于点P.设截面QA1PC1的面积为S1,四面体B1-A1C1P的三侧面△B1A1C1、△B1PC1、△B1A1P面积的和为S2,S=S1-S2
(Ⅰ)证明:AC⊥QP;
(Ⅱ)当S取得最小值时,求cos∠A1QC1的值.

查看答案和解析>>

科目:高中数学 来源:高中数学综合题 题型:013

已知直三棱柱ABC—A1B1C1的底面积为4,D、E、F分别为侧棱AA1,BB1,CC1上的点,且AD=1,BE=2,CF=3,则多面体DEF—ABC的体积等于

[  ]

A.6    B.8    C.12    D.16

查看答案和解析>>

科目:高中数学 来源:2010年广东省高考数学冲刺预测试卷15(文科)(解析版) 题型:解答题

如图,已知直四棱柱ABCD-A1B1C1D1的底面是边长为2、∠ADC=120°的菱形,Q是侧棱DD1(DD1)延长线上的一点,过点Q、A1、C1作菱形截面QA1PC1交侧棱BB1于点P.设截面QA1PC1的面积为S1,四面体B1-A1C1P的三侧面△B1A1C1、△B1PC1、△B1A1P面积的和为S2,S=S1-S2
(Ⅰ)证明:AC⊥QP;
(Ⅱ)当S取得最小值时,求cos∠A1QC1的值.

查看答案和解析>>

科目:高中数学 来源:2010年广东省高考数学冲刺预测试卷15(理科)(解析版) 题型:解答题

如图,已知直四棱柱ABCD-A1B1C1D1的底面是边长为2、∠ADC=120°的菱形,Q是侧棱DD1(DD1)延长线上的一点,过点Q、A1、C1作菱形截面QA1PC1交侧棱BB1于点P.设截面QA1PC1的面积为S1,四面体B1-A1C1P的三侧面△B1A1C1、△B1PC1、△B1A1P面积的和为S2,S=S1-S2
(Ⅰ)证明:AC⊥QP;
(Ⅱ)当S取得最小值时,求cos∠A1QC1的值.

查看答案和解析>>

同步练习册答案