【题目】已知函数f(x)=sin(x+θ)+ cos(x+θ), ,且函数f(x)是偶函数,则θ的值为 .
【答案】
【解析】解:f(x)=sin(x+θ)+ cos(x+θ) =2( )
=
当 (k∈Z)
即:
由于:
所以:当k=0时,θ=
所以答案是:
【考点精析】掌握函数奇偶性的性质和函数y=Asin(ωx+φ)的图象变换是解答本题的根本,需要知道在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇;图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.
科目:高中数学 来源: 题型:
【题目】空间四边形ABCD中,AB=CD且异面直线AB与CD所成的角为30°,E,F为BC和AD的中点,则异面直线EF和AB所成的角为( )
A.15°
B.30°
C.45°或75°
D.15°或75°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2﹣4x﹣6y+12=0,点A(3,5).
(1)求过点A的圆的切线方程;
(2)O点是坐标原点,连接OA,OC,求△AOC的面积S.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中,真命题是( )
A.若 与 互为负向量,则 + =0
B.若 =0,则 = 或 =
C.若 , 都是单位向量,则 =1
D.若k为实数且k = ,则k=0或 =
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】养正中学新校区内有一块以O为圆心,R(单位:米)为半径的半圆形荒地(如图),校总务处计划对其开发利用,其中弓形BCD区域(阴影部分)用于种植观赏植物,△OBD区域用于种植花卉出售,其余区域用于种植草皮出售。已知种植观赏植物的成本是每平方米20元,种植花卉的利润是每平方米80元,种植草皮的利润是每平方米30元。
(1)设(单位:弧度),用表示弓形BCD的面积
(2)如果该校总务处邀请你规划这块土地。如何设计的大小才能使总利润最大?并求出该最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体AC1中,过点A作平面A1BD的垂线,垂足为点H,则以下命题中,错误的命题是( )
A.点H是△A1BD的垂心
B.AH的延长线经过点C1
C.AH垂直平面CB1D1
D.直线AH和BB1所成角为45°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省的一个气象站观测点在连续4天里记录的指数与当天的空气水平可见度(单位: )的情况如表1:
700 | ||||
0.5 | 3.5 | 6.5 | 9.5 |
该省某市2017年9月指数频数分布如表2:
频数 | 3 | 6 | 12 | 6 | 3 |
(1)设,根据表1的数据,求出关于的线性回归方程;
(2)小李在该市开了一家洗车店,经统计,洗车店平均每天的收入与指数有相关关系,如表3:
日均收入(元) |
根据表3估计小李的洗车店9月份平均每天的收入.
(附参考公式: ,其中, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的奇函数,当x≥0时f(x)=2x﹣x2 ,
(1)求f(x)的表达式;
(2)设0<a<b,当x∈[a,b]时,f(x)的值域为 ,求a,b的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com