精英家教网 > 高中数学 > 题目详情
2.已知椭圆C的离心率为$\frac{\sqrt{2}}{2}$,右焦点为F2(1,0),过点B(2,0)作直线交椭圆C于P,Q两点,设直线PF2和QF2的斜率分别为k1,k1
(1)求证:k1+k2为定值;
(2)求△PF2Q面积S的最大值.

分析 (1)设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),由题意可得c=1,由离心率公式可得a,进而得到b,即有椭圆方程,设直线PQ:y=k(x-2),代入椭圆方程,运用判别式大于0和韦达定理,结合直线的斜率公式,化简整理可得k1+k2为定值;
(2))△PF2Q面积S=$\frac{1}{2}$|BF2|•|y1-y2|,由直线方程和韦达定理代入化简,再由换元法和二次函数的最值求法,即可得到最大值.

解答 解:(1)证明:设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
由题意可得c=1,e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,又c2=a2-b2
解得b=c=1,a=$\sqrt{2}$,
即椭圆为$\frac{{x}^{2}}{2}$+y2=1,
设直线PQ:y=k(x-2),
代入椭圆方程可得(1+2k2)x2-8k2x+8k2-2=0,
由△=64k4-4(1+2k2)(8k2-2)>0,
可得0<k2<$\frac{1}{2}$,
设P(x1,y1),Q(x2,y2),
x1+x2=$\frac{8{k}^{2}}{1+2{k}^{2}}$,x1x2=$\frac{8{k}^{2}-2}{1+2{k}^{2}}$,
即有k1+k2=$\frac{{y}_{1}}{{x}_{1}-1}$+$\frac{{y}_{2}}{{x}_{2}-1}$=$\frac{k({x}_{1}-2)}{{x}_{1}-1}$+$\frac{k({x}_{2}-2)}{{x}_{2}-1}$
=k•$\frac{2{x}_{1}{x}_{2}-3({x}_{1}+{x}_{2})+4}{{x}_{1}{x}_{2}-({x}_{1}+{x}_{2})+1}$,
将韦达定理代入上式,可得
2x1x2-3(x1+x2)+4=$\frac{16{k}^{2}-4}{1+2{k}^{2}}$-$\frac{24{k}^{2}}{1+2{k}^{2}}$+4=0,
则k1+k2为定值0;
(2)△PF2Q面积S=$\frac{1}{2}$|BF2|•|y1-y2|
=$\frac{1}{2}$|k|•|x1-x2|=$\frac{1}{2}$|k|•$\sqrt{\frac{64{k}^{4}}{(1+2{k}^{2})^{2}}-\frac{32{k}^{2}-8}{1+2{k}^{2}}}$
=$\sqrt{2}$•$\sqrt{\frac{{k}^{2}(1-2{k}^{2})}{(1+2{k}^{2})^{2}}}$,设t=1+2k2(1<t<2),
则S=$\sqrt{2}$•$\sqrt{\frac{\frac{t-1}{2}(2-t)}{{t}^{2}}}$=$\sqrt{\frac{3}{t}-\frac{2}{{t}^{2}}-1}$=$\sqrt{-2(\frac{1}{t}-\frac{3}{4})^{2}+\frac{1}{8}}$,
当$\frac{1}{t}$=$\frac{3}{4}$即t=$\frac{4}{3}$即k=±$\frac{\sqrt{6}}{6}$时,取得最大值,且为$\frac{\sqrt{2}}{4}$.
则△PF2Q面积S的最大值为$\frac{\sqrt{2}}{4}$.

点评 本题考查椭圆的方程和性质及运用,考查直线和椭圆的位置关系,联立直线方程和椭圆方程运用韦达定理,同时考查三角形的面积的最大值,注意运用二次函数的最值求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知α是第一角限的角,化简$\sqrt{\frac{1+sinα}{1-sinα}}$-$\sqrt{\frac{1-sinα}{1+sinα}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\left\{\begin{array}{l}{-{2}^{-x}+1,x≤0}\\{f(x-1),x>0}\end{array}\right.$
(1)作出函数f(x)的大致图象;
(2)讨论方程f(x)=a的根的情况;
(3)若方程f(x)=$\frac{-1}{x+2}+a$有两个实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知sinθ-cosθ=-$\frac{\sqrt{5}}{2}$,求tanθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆C1的方程为x2+y2=m(m>0),圆C2的方程为x2+y2+6x-8y-11=0.
(1)若圆C1与圆C2相内切,求实数m的值:
(2)求过点P(3,-4)且与圆C2相切的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知关于x的方程2x2-4ax+a-3=0(a∈R).
(1)若方程的两根x1,x2满足x1>1,x2<1,求实数a的取值范围;
(2)若方程的两根x1,x2满足-1<x1<0,3<x2<4,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的通项公式是an=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$(n∈N*).
(1)求证:数列{an}是递增数列;
(2)若对一切大于1的正整数n,不等式an>$\frac{1}{12}$loga(a+1)+$\frac{2}{3}$恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线l的方程为x=1.则该方程表示(  )
A.经过点(1,2)垂直x轴的直线B.经过点(1,2)垂直y轴的直线
C.经过点(2,1)垂直x轴的直线D.经过点(2,1)垂直y轴的直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,以原点O为圆心的两个同心圆的半径分别为3和1,过原点O的射线交大圆于点P,交小圆于点Q,P在y轴上的射影为M,动点N满足$\overrightarrow{PM}$=λ$\overrightarrow{PN}$且$\overrightarrow{PM}$•$\overrightarrow{QN}$=0.
(1)求点N的轨迹方程;
(2)过点A(0,3)作斜率分别为k1,k2的直线l1,l2与点N的轨迹分别交于E,F两点,k1•k2=-9,求证:直线EF过定点.

查看答案和解析>>

同步练习册答案