精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,为棱上的动点.

1)若的中点,求证:平面

2)若平面平面ABC,且是否存在点,使二面角的平面角的余弦值为?若存在,求出的值,若不存在,说明理由.

【答案】1)证明见解析;(2.

【解析】

1)连,连中点,结合已知可得,即可证明结论;

2)根据已知可得平面,以为坐标原点建立空间直角坐标系,由已知确定坐标,假设满足条件的点存在,设,求出平面的法向量坐标,取平面一个法向量为,按照空间向量的面面角公式,建立的方程,求解即可得出结论.

1)连,连

四边形为平行四边形,中点,

的中点,平面

平面平面

(2)平行四边形为菱形,

又平面平面ABC,平面平面

平面

过点的平行线,即两两互相垂直,

为坐标原点,以所在的直线分别为轴建立空间直角坐标系,

假设存在点,使二面角的平面角的余弦值为

平面一个法向量为

设平面的法向量为

,即

,则

整理得

解得舍去)或

满足条件的点存在,且.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】新型冠状病毒属于属的冠状病毒,有包膜,颗粒常为多形性,其中包含着结构为数学模型的,人体肺部结构中包含的结构,新型冠状病毒肺炎是由它们复合而成的,表现为.则下列结论正确的是(

A.,则为周期函数

B.对于的最小值为

C.在区间上是增函数,则

D.,满足,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名枪手进行射击比赛,每人各射击三次,甲三次射击命中率均为;乙第一次射击的命中率为,若第一次未射中,则乙进行第二次射击,射击的命中率为,如果又未中,则乙进行第三次射击,射击的命中率为.乙若射中,则不再继续射击.则甲三次射击命中次数的期望为_____,乙射中的概率为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】今年1月至2月由新型冠状病毒引起的肺炎病例陡然增多,为了严控疫情传播,做好重点人群的预防工作,某地区共统计返乡人员人,其中岁及以上的共有.人中确诊的有名,其中岁以下的人占.

1)请将下面的列联表补充完整,并判断是否有%的把握认为是否确诊患新冠肺炎与年龄有关;

确诊患新冠肺炎

未确诊患新冠肺炎

合计

50岁及以上

40

50岁以下

合计

10

100

2)为了研究新型冠状病毒的传染源和传播方式,从名确诊人员中随机抽出人继续进行血清的研究,表示被抽取的人中岁以下的人数,求的分布列以及数学期望.

参考表:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:过点A,两个焦点为(-1,0),(1,0)。

(Ⅰ)求椭圆C的方程;

(Ⅱ)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥ABCD中,点EBD上,EAEBECEDBDCD,△ACD为正三角形,点MN分别在AECD上运动(不含端点),且AMCN,则当四面体CEMN的体积取得最大值时,三棱锥ABCD的外接球的表面积为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】众所周知,大型网络游戏(下面简称网游)的运行必须依托于网络的基础上,否则会出现频繁掉线的情况,进而影响游戏的销售和推广,某网游经销在甲地区5个位置对两种类型的网络(包括电信网通)在相同条件下进行游戏掉线的测试,得到数据如下:

位置

类型

A

B

C

D

E

电信

4

3

8

6

12

网通

5

7

9

4

3

1)如果在测试中掉线次数超过5次,则网络状况为糟糕,否则为良好,那么在犯错误的概率不超过0.15的前提下,能否说明网络状况与网络的类型有关?

2)若该游戏经销商要在上述接受测试的电信的5个地区中任选2个作为游戏推广,求AB两地区至少选到一个的概率.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的两个顶点的坐标分别为,且所在直线的斜率之积等于,记顶点的轨迹为.

Ⅰ)求顶点的轨迹的方程;

Ⅱ)若直线与曲线交于两点,点在曲线上,且的重心(为坐标原点),求证:的面积为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知棱台,平面平面DE分别是的中点。

)证明:

)求与平面所成角的余弦值。

查看答案和解析>>

同步练习册答案