9£®ÒÑÖªº¯Êýf£¨x£©=2sin£¨¦Øx+$\frac{¦Ð}{6}$£©µÄͼÏóÓëxÖá½»µãµÄºá×ø±ê£¬ÒÀ´Î¹¹³ÉÒ»¸ö¹«²îΪ$\frac{¦Ð}{2}$µÄµÈ²îÊýÁУ¬°Ñº¯Êýf£¨x£©µÄͼÏóÑØxÖáÏò×óƽÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»£¬µÃµ½º¯Êýg£¨x£©µÄͼÏó£¬Ôò£¨¡¡¡¡£©
A£®g£¨x£©ÊÇÆ溯ÊýB£®g£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßx=-$\frac{¦Ð}{4}$¶Ô³Æ
C£®g£¨x£©ÔÚ[$\frac{¦Ð}{4}$£¬$\frac{¦Ð}{2}$]ÉϵÄÔöº¯ÊýD£®µ±x¡Ê[$\frac{¦Ð}{6}$£¬$\frac{2¦Ð}{3}$]ʱ£¬g£¨x£©µÄÖµÓòÊÇ[-2£¬1]

·ÖÎö ÀûÓÃÕýÏÒº¯ÊýµÄÖÜÆÚÐÔÇóµÃ¦ØµÄÖµ£¬¿ÉµÃf£¨x£©µÄ½âÎöʽ£¬ÔÙÀûÓú¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬ÇóµÃg£¨x£©µÄ½âÎöʽ£¬ÔÙÀûÓÃÕýÏÒº¯ÊýµÄͼÏóµÄ¶Ô³ÆÐÔ£¬ÕýÏÒº¯ÊýµÄµ¥µ÷ÐÔ¡¢¶¨ÒåÓòºÍÖµÓò£¬µÃ³ö½áÂÛ£®

½â´ð ½â£ºº¯Êýf£¨x£©=2sin£¨¦Øx+$\frac{¦Ð}{6}$£©µÄͼÏóÓëxÖá½»µãµÄºá×ø±ê£¬
ÒÀ´Î¹¹³ÉÒ»¸ö¹«²îΪ$\frac{¦Ð}{2}$µÄµÈ²îÊýÁУ¬
¡à$\frac{T}{2}$=$\frac{1}{2}•\frac{2¦Ð}{¦Ø}$=$\frac{¦Ð}{2}$£¬¡à¦Ø=2£¬f£¨x£©=2sin£¨2x+$\frac{¦Ð}{6}$£©£®
°Ñº¯Êýf£¨x£©µÄͼÏóÑØxÖáÏò×óƽÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»£¬
µÃµ½º¯Êýg£¨x£©=2sin[2£¨x+$\frac{¦Ð}{6}$£©+$\frac{¦Ð}{6}$]=2sin£¨2x+$\frac{¦Ð}{2}$£©=2cos2xµÄͼÏó£¬
¹Êg£¨x£©ÊÇżº¯Êý£¬¹ÊÅųýA£»
µ±x=-$\frac{¦Ð}{4}$ʱ£¬g£¨x£©=0£¬¹Êg£¨x£©µÄͼÏó²»¹ØÓÚÖ±Ïßx=-$\frac{¦Ð}{4}$¶Ô³Æ£¬¹ÊÅųýB£»
ÔÚ[$\frac{¦Ð}{4}$£¬$\frac{¦Ð}{2}$]ÉÏ£¬2x¡Ê[$\frac{¦Ð}{2}$£¬¦Ð]£¬¹Êg£¨x£©ÔÚ[$\frac{¦Ð}{4}$£¬$\frac{¦Ð}{2}$]Éϵļõº¯Êý£¬¹ÊÅųýC£»
µ±x¡Ê[$\frac{¦Ð}{6}$£¬$\frac{2¦Ð}{3}$]ʱ£¬2x¡Ê[$\frac{¦Ð}{3}$ $\frac{4¦Ð}{3}$]£¬µ±2x=¦Ðʱ£¬g£¨x£©=2cos2xÈ¡µÃ×îСֵΪ-2£¬
µ±2x=$\frac{¦Ð}{3}$ʱ£¬g£¨x£©=2cos2xÈ¡µÃ×î´óֵΪ1£¬¹Êº¯Êý g£¨x£©µÄÖµÓòΪ[-2£¬1]£¬
¹ÊÑ¡£ºD£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÕýÏÒº¯ÊýµÄÖÜÆÚÐÔ£¬º¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬ÕýÏÒº¯ÊýµÄͼÏóµÄ¶Ô³ÆÐÔ£¬ÕýÏÒº¯ÊýµÄµ¥µ÷ÐÔ¡¢¶¨ÒåÓòºÍÖµÓò£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬ÔÚÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬P£¬Q·Ö±ðÊÇAA1£¬B1C1Éϵĵ㣬ÇÒAP=3A1P£¬B1C1=4B1Q£®
£¨1£©ÇóÖ¤£ºPQ¡ÎƽÃæABC1£»
£¨2£©ÈôAB=AA1£¬BC=3£¬AC1=3£¬BC1=$\sqrt{13}$£¬ÇóÖ¤£ºÆ½ÃæABC1¡ÍƽÃæAA1C1C£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªf£¨x£©ÎªÆ溯Êý£¬µ±x£¼0ʱ£¬f£¨x£©=ln£¨-x£©-3x£¬ÔòÇúÏßy=f£¨x£©ÔÚ£¨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³ÌΪ4x+y-1=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨2£¬5£©£¬$\overrightarrow{b}$=£¨x£¬-2£©£¬ÇÒ$\overrightarrow{a}$¡Î$\overrightarrow{b}$£¬Ôòx=$-\frac{4}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªÈý¸öÊýa=0.32£¬b=log20.3£¬c=20.3£¬Ôòa£¬b£¬cÖ®¼äµÄ´óС¹ØϵÊÇ£¨¡¡¡¡£©
A£®b£¼a£¼cB£®a£¼b£¼cC£®a£¼c£¼bD£®b£¼c£¼a

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{2}$ax2+lnx£¬a¡ÊR£®
£¨¢ñ£©ÈôÇúÏßy=f£¨x£©ÓëÖ±Ïßy=3x+bÔÚx=1´¦ÏàÇУ¬ÇóʵÊýa£¬bµÄÖµ£»
£¨¢ò£©Çóº¯Êýy=f£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ó£©Èôa=0ʱ£¬º¯Êýh£¨x£©=f£¨x£©+bxÓÐÁ½¸ö²»Í¬µÄÁãµã£¬ÇóʵÊýbµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªÖ±Ïßx=1ÉϵĵãPµ½Ö±Ïßx-y=0µÄ¾àÀëΪ$\sqrt{2}$£¬ÔòµãPµÄ×ø±êΪ£¨¡¡¡¡£©
A£®£¨1£¬-1£©B£®£¨1£¬3£©C£®£¨1£¬-2£©»ò£¨1£¬2£©D£®£¨1£¬-1£©»ò£¨1£¬3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬Õý·½ÐÎABCDÓëÌÝÐÎAMPDËùÔÚµÄƽÃ滥Ïà´¹Ö±£¬AD¡ÍPD£¬MA¡ÎPD£¬MA=AD=$\frac{1}{2}$PD=1£®
£¨1£©ÇóÖ¤£ºMB¡ÎƽÃæPDC£»
£¨2£©Çó¶þÃæ½ÇM-PC-DµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÔÚ¡÷ABCÖУ¬½ÇA¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðΪa¡¢b¡¢c£®ÒÑÖªacosAcosB-bsin2A-ccosA=2bcosB£®
£¨1£©ÇóB£»
£¨2£©Èô$b=\sqrt{7}a£¬{S_{¡÷ABC}}=2\sqrt{3}$£¬Çóa£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸