精英家教网 > 高中数学 > 题目详情

【题目】在正方形ABCD中,AB=AD=2,M,N分别是边BC,CD上的动点,且MN= ,则 的取值范围为

【答案】[4,8﹣2 ]
【解析】解:以AB,AD为坐标轴建立平面直角坐标系如图:
设CM=a,则CN= .∴0
∴M(2,2﹣a),N(2﹣ ,2).
=(2,2﹣a), =(2﹣ ,2).
=4﹣2 +4﹣2a=8﹣2(a+ ).
∵2a ≤a2+( 2=2,
∴(a+ 2=2+2a ≤4.
∴a+ ≤2.
又由三角形的性质可得MC+CN>MN= ,当M,C,N三点共线时,MC+CN=MN=
a+ ≤2.
∴当a+ = 时, 取得最大值8﹣2 ,当a+ =2时, 取得最小值4.
所以答案是:[4,8﹣2 ].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知

1)若 的充分条件,求实数 的取值范围;

(2)若 ”为真命题,“”为假命题,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高一数学竞赛共设有35个考场,甲、乙、丙三所学校的领队各自将本校学生人数相同的考场归为一组.经统计,甲校共有i组,各组的考场数分别为;乙校共有j组,各组的考场数分别为;丙校共有k组,各组的考场数分别为.已知包含了1 ~ 14的所有整数.证明:能找到三个考场,至少有两所学校在这三个考场中的选手人数各自是相同的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图甲,四边形中,的中点, 将(图甲)沿直线折起,使二面角(如图乙).

(1)求证:⊥平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(  )

A. 有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱

B. 四棱锥的四个侧面都可以是直角三角形

C. 有两个面互相平行,其余各面都是梯形的多面体是棱台

D. 以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下四个命题:
①已知命题p:x∈R,tanx=2;命题q:x∈R,x2﹣x+1≥0,则命题p∧q是真命题;
②过点(﹣1,2)且在x轴和y轴上的截距相等的直线方程是x+y﹣1=0;
③函数f(x)=2x+2x﹣3在定义域内有且只有一个零点;
④若直线xsin α+ycos α+l=0和直线 垂直,则角
其中正确命题的序号为 . (把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一个几何体的三视图如图所示,这个几何体可能是一个( )

A. 棱台 B. 棱锥 C. 棱柱 D. 圆台

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知全集U={2,4,a2a+1},A={a+4,4},UA={7},则a________.

(2)a>0a≠1时,函数必过定点_______

(3)为了保证信息安全,传输必须使用加密方式,有一种方式其加密、解密原理如下:

明文密文密文明文

己知加密为yax-2(x为明文、y为密文),如果明文“3”通过加密后得到密文为“6”,再发送,接收方通过解密得到明文“3”,若接收方接到密文为“14”,则原发的明文是________

(4)已知3a=5b=M,且,则M的值为______________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

同步练习册答案