精英家教网 > 高中数学 > 题目详情
(本题满分12分)
已知:
求证:
.证明:…………2分
由于
=………………5分
…………①………………6分
由于
………②……………8分
同理: …………③……………10分
①+②+③得:
即原不等式成立………………12分
同答案
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如果求证:成等差数列。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设a、b、c均为正数.求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设x>0,y>0且x≠y,求证

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=(1+x)n(x>-1,n∈N*)在点(0,1)处的切线L为y=g(x)
(Ⅰ)求切线L并判断函数f(x)在x∈(-1,+∞)上的单调性;
(Ⅱ)求证:f(x)≥g(x)对任意的x∈(-1,+∞)都成立;
(Ⅲ)求证:已知m,n∈N*,Sm=1m+2m+…+nm,求证:nm+1<(m+1)Sm

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

图1,2,3,4分别包含1,5,13和25个互不重叠的单位正方形,按同样的方式构造图形,则第个图包含______个互不重叠的单位正方形。

图1      图2         图3              图4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下面四个判断中,正确的是(  )
A.式子1+k+k2+…+kn(n∈N*)中,当n=1时式子值为1
B.式子1+k+k2+…+kn-1(n∈N*)中,当n=1时式子值为1+k
C.式子1++…+(n∈N*)中,当n=1时式子值为1+
D.设f(x)=(n∈N*),则f(k+1)=f(k)+

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)解关于的不等式

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

证明下列不等式:
(1)若xyz∈R,abc∈R+,则z2≥2(xy+yz+zx)
(2)若xyz∈R+,且x+y+z=xyz,则≥2()

查看答案和解析>>

同步练习册答案