精英家教网 > 高中数学 > 题目详情

(本题满分16分)数列的前项和记为,且满足
(1)求数列的通项公式;
(2)求和
(3)设有项的数列是连续的正整数数列,并且满足:

问数列最多有几项?并求这些项的和.

(1)(2)(3)数列最多有9项,和为63.

解析试题分析:(1)由
相减得,即
,得
数列是以1为首项2为公比的等比数列,
.                                                          ……5分
(2)由(1)知


.                                            ……10分
(3)由已知得
是连续的正整数数列,
上式化为.                           ……12分
,消
,由于
时,的最大值为9.
此时数列的所有项的和为.                        ……16分
考点:本小题主要考查由数列的递推公式求数列的通项公式,以及公式法、分组法等求数列的前n项的和,考查学生转化问题的能力和运算求解能力.
点评:由数列的递推公式求数列的通项公式有累加、累乘和构造新数列法,求数列的前n项和有公式法、分组法、错位相减法和裂项相消法等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

数列的前项和为,等差数列满足
(1)分别求数列的通项公式;      
(2)设,求证

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知数列的前项和为,对一切正整数,点都在函数的图像上.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知数列满足,数列满足.
(1)求证:数列是等差数列;
(2)设,求满足不等式的所有正整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设数列的前项和为.已知
(Ⅰ)设,求数列的通项公式;
(Ⅱ)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知等差数列的前项和为,公差d0,,且成等比数列.
(1)求数列的通项公式;
(2)求数列的前项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)数列项和为
(1)求证:数列为等比数列;
(2)设,数列项和为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知函数
的图象上。
(1)求数列的通项公式
(2)令求数列
(3)令证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在数列中,
(1)证明数列是等比数列;
(2)求数列的前项和
(3)证明不等式,对任意皆成立.

查看答案和解析>>

同步练习册答案