精英家教网 > 高中数学 > 题目详情

【题目】从某地区小学的期末考试中抽取部分学生的数学成绩,由抽查结果得到如图的频率分布直方图,分数落在区间内的频率之比为

1)求这些学生的分数落在区间内的频率;

2)若将频率视为概率,从该地区小学的这些学生中随机抽取3人,记这3人中成绩位于区间内的人数为,求的分布列与数学期望.

【答案】1;(2)分布列详见解析,数学期望为1.8

【解析】

1)设区间内的频率为,则区间内的频率分别为,再利用小矩形的面积和为1即可;

2)从该小学的这些学生中随机抽取3人,相当于进行了3次独立重复试验.所以服从二项分布,由频率分布直方图易得,再利用独立重复试验的概率公式计算即可得到答案.

1)设区间内的频率为

则区间内的频率分别为

依题意得,解得

所以区间内的频率为

2)从该小学的这些学生中随机抽取3人,相当于进行了3次独立重复试验.

所以服从二项分布,其中

由(1)得,区间内的频率为

将频率视为概率得

因为的所有可能取值为0123

所以的分布列为:

0

1

2

3

所以的数学期望为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知点的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)求的普通方程和的直角坐标方程;

2)设曲线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学举行的新冠肺炎防控知识闭卷考试比赛,总分获得一等奖、二等奖、三等奖的代表队人数情况如下表,该校政教处为使颁奖仪式有序进行,气氛活跃,在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取16人在前排就坐,其中一等奖代表队有6.

1)求二等奖代表队的男生人数;

2)从前排就坐的三等奖代表队员5人(23女)中随机抽取3人上台领奖,请求出只有一个男生上台领奖的概率;

3)抽奖活动中,代表队员通过操作按键,使电脑自动产生[22]内的两个均匀随机数xy,随后电脑自动运行如图所示的程序框图的相应程序,若电脑显示中奖,则代表队员获相应奖品;若电脑显示谢谢,则不中奖,求代表队队员获得奖品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】受突如其来的新冠疫情的影响,全国各地学校都推迟2020年的春季开学.某学校“停课不停学”,利用云课平台提供免费线上课程.该学校为了解学生对线上课程的满意程度,随机抽取了500名学生对该线上课程评分.其频率分布直方图如下:若根据频率分布直方图得到的评分低于80分的概率估计值为0.45.

1)(i)求直方图中的ab值;

ii)若评分的平均值和众数均不低于80分视为满意,判断该校学生对线上课程是否满意?并说明理由(同一组中的数据用该组区间的中点值为代表);

2)若采用分层抽样的方法,从样本评分在[6070)和[90100]内的学生中共抽取5人进行测试来检验他们的网课学习效果,再从中选取2人进行跟踪分析,求这2人中至少一人评分在[6070)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】珠算之父程大位是我国明代著名的数学家,他的应用巨著《算法统综》中有一首竹筒容米问题:家有九节竹一茎,为因盛米不均平,下头三节四升五,上梢四节三升八,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明.”((注)四升五:4.5升,次第盛:盛米容积依次相差同一数量.)用你所学的数学知识求得中间两节竹的容积为

A. 2.2B. 2.3

C. 2.4D. 2.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为.过焦点且垂直于轴的直线与椭圆相交所得的弦长为3,直线与椭圆相切.

1)求椭圆的标准方程;

2)设过点的直线与椭圆相交于两点,若,问直线是否存在?若存在,求直线的斜率的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD为矩形,平面PAD⊥平面ABCDPAPDEF分别为ADPB的中点.求证:

1EF//平面PCD

2)平面PAB平面PCD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学计划用他姓名的首字母,身份证的后4位数字(4位数字都不同)以及3个符号设置一个六位的密码.若必选,且符号不能超过两个,数字不能放在首位和末位,字母和数字的相对顺序不变,则他可设置的密码的种数为(

A.864B.1009C.1225D.1441

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的归家之一,某市为了制订合理的节水方案,对家庭用水情况进行了抽样调查,获得了某年100个家庭的月均用水量(单位:)的数据,将这些数据按照分成9组,制成了如图所示的频率分布直方图.

1)求图中的值,若该市有30万个家庭,试估计全市月均用水量不低于的家庭数;

2)假设同组中的每个数据都用该组区间的中点值代替,试估计全市家庭月均用水量的平均数;

3)现从月均用水量在的家庭中,先按照分层抽样的方法抽取9个家庭,再从这9家庭中抽取4个家庭,记这4个家庭中月均用水量在中的数量为,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案