【题目】函数满足,且、时,成立,若对恒成立.
(1)判断的单调性和对称性;
(2)求的取值范围.
科目:高中数学 来源: 题型:
【题目】函数的定义域为().
(1)当时,求函数的值域;
(2)若函数在定义域上是减函数,求的取值范围;
(3)求函数在定义域上的最大值及最小值,并求出函数取最值时的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数为常数
(1)当在处取得极值时,若关于x的方程 在上恰有两个不相等的实数根,求实数b的取值范围.
(2)若对任意的,总存在,使不等式 成立,求实数 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,若存在,使得,且对任意,均有(即是一个公差为的等差数列),则称数列是一个长度为的“弱等差数列”.
(1)判断下列数列是否为“弱等差数列”,并说明理由.
①1,3,5,7,9,11;
②2,,,,.
(2)证明:若,则数列为“弱等差数列”.
(3)对任意给定的正整数,若,是否总存在正整数,使得等比数列:是一个长度为的“弱等差数列”?若存在,给出证明;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把函数的图象沿着轴向左平移个单位,纵坐标伸长到原来的倍(横坐标不变)后得到函数的图象,对于函数有以下四个判断:
(1)该函数的解析式为;
(2)该函数图象关于点对称;
(3)该函数在上是增函数;
(4)若函数在上的最小值为,则.
其中正确的判断有( )
A.个B.个C.个D.个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面内的“向量列”,如果对于任意的正整数,均有,则称此“向量列”为“等差向量列”,称为“公差向量”.平面内的“向量列”,如果且对于任意的正整数,均有(),则称此“向量列”为“等比向量列”,常数称为“公比”.
(1)如果“向量列”是“等差向量列”,用和“公差向量”表示;
(2)已知是“等差向量列”,“公差向量”,,;是“等比向量列”,“公比”,,.求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是底面边长为1且侧棱长为的正六棱锥.
(1)写出直线PA与直线CD,直线PA与面ABCDEF之间的关系;
(2)求棱锥的高与斜高;
(3)求棱锥的侧面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com