¾«Ó¢¼Ò½ÌÍøÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1(a£¾b£¾0)
×óÓÒÁ½½¹µãΪF1£¬F2£¬PÊÇÍÖÔ²ÉÏÒ»µã£¬ÇÒÔÚxÖáÉÏ·½£¬PF2¡ÍF1F2£¬OH¡ÍPF1ÓÚH£¬OH=¦ËOF1£¬¦Ë¡Ê[
1
3
£¬
1
2
]
£®
£¨1£©ÇóÍÖÔ²µÄÀëÐÄÂÊeµÄÈ¡Öµ·¶Î§£»
£¨2£©µ±eÈ¡×î´óֵʱ£¬¹ýF1£¬F2£¬PµÄÔ²QµÄ½ØyÖáµÄÏ߶γ¤Îª6£¬ÇóÔ²QµÄ·½³Ì£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬¹ýÍÖÔ²ÓÒ×¼ÏßLÉÏÈÎÒ»µãAÒýÔ²QµÄÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪM£¬N£¬ÊÔ̽¾¿Ö±ÏßMNÊÇ·ñ¹ý¶¨µã£¿Èô¹ý¶¨µã£¬ÇëÇó³ö¸Ã¶¨µã£»·ñÔò£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£ºÓÉÏàËÆÈý½ÇÐÎÖª£¬
OH
PF2
=
OF1
PF1
£¬¦Ë=
b2
a
2a-
b2
a
£¬2a2¦Ë-b2¦Ë=b2£¬2a2¦Ë=b2£¨1+¦Ë£©£¬
b2
a2
=
2¦Ë
1+¦Ë
£®
£¨1£©ÓÉe2=
c2
a2
=1-
b2
a2
=1-
2¦Ë
1+¦Ë
=
1-¦Ë
1+¦Ë
£¬Öªe=
1-¦Ë
1+¦Ë
£¬ÔÚ[
1
3
£¬
1
2
]
Éϵ¥µ÷µÝ¼õ£®ÓÉ´ËÄÜÇó³öÍÖÔ²µÄÀëÐÄÂÊeµÄÈ¡Öµ·¶Î§£®
£¨2£©µ±e=
2
2
ʱ£¬
c
a
=
2
2
£¬ËùÒÔc=b=
2
2
a
£¬2b2=a2£®ÓÉPF2¡ÍF1F2£¬ÖªPF1ÊÇÔ²µÄÖ±¾¶£¬Ô²ÐÄÊÇPF1µÄÖе㣬ÓÉ´ËÄÜÇó³öÔ²QµÄ·½³Ì£®
£¨3£©ÍÖÔ²·½³ÌÊÇ
x2
16
+
y2
8
=1
£¬ÓÒ×¼Ïß·½³ÌΪx=4
2
£¬ÓÉÖ±ÏßAM£¬ANÊÇÔ²QµÄÁ½ÌõÇÐÏߣ¬ÖªÇеãM£¬NÔÚÒÔAQΪֱ¾¶µÄÔ²ÉÏ£®ÉèAµã×ø±êΪ(4
2
£¬t)
£¬ÓÉ´ËÄܹ»µ¼³öÖ±ÏßMN±Ø¹ý¶¨µã£®
½â´ð£º½â£ºÓÉÏàËÆÈý½ÇÐÎÖª£¬
OH
PF2
=
OF1
PF1
£¬¦Ë=
b2
a
2a-
b2
a
£¬
¡à2a2¦Ë-b2¦Ë=b2£¬2a2¦Ë=b2£¨1+¦Ë£©£¬
b2
a2
=
2¦Ë
1+¦Ë
£®
£¨1£©e2=
c2
a2
=1-
b2
a2
=1-
2¦Ë
1+¦Ë
=
1-¦Ë
1+¦Ë
£¬¡àe=
1-¦Ë
1+¦Ë
£¬ÔÚ[
1
3
£¬
1
2
]
Éϵ¥µ÷µÝ¼õ£®
¡à¦Ë=
1
2
ʱ£¬e2×îС
1
3
£¬¦Ë=
1
3
ʱ£¬e2×î´ó
1
2
£¬
¡à
1
3
¡Üe2¡Ü
1
2
£¬¡à
3
3
¡Üe¡Ü
2
2
£®
£¨2£©µ±e=
2
2
ʱ£¬
c
a
=
2
2
£¬¡àc=b=
2
2
a
£¬¡à2b2=a2£®
¡ßPF2¡ÍF1F2£¬¡àPF1ÊÇÔ²µÄÖ±¾¶£¬Ô²ÐÄÊÇPF1µÄÖе㣬
¡àÔÚyÖáÉϽصõÄÏÒ³¤¾ÍÊÇÖ±¾¶£¬¡àPF1=6£®
ÓÖPF1=2a-
b2
a
=2a-
a2
2a
=
3
2
a=6
£¬¡àa=4£¬c=b=2
2
£®
¡àPF2=
b2
a
=
a
2
=2
£¬Ô²ÐÄQ£¨0£¬1£©£¬°ë¾¶Îª3£¬x2+£¨y-1£©2=9£®
£¨3£©ÍÖÔ²·½³ÌÊÇ
x2
16
+
y2
8
=1
£¬ÓÒ×¼Ïß·½³ÌΪx=4
2
£¬
¡ßÖ±ÏßAM£¬ANÊÇÔ²QµÄÁ½ÌõÇÐÏߣ¬¡àÇеãM£¬NÔÚÒÔAQΪֱ¾¶µÄÔ²ÉÏ£®ÉèAµã×ø±êΪ(4
2
£¬t)
£¬
¡à¸ÃÔ²·½³ÌΪx(x-4
2
)+(y-1)(y-t)=0
£®¡àÖ±ÏßMNÊÇÁ½Ô²µÄ¹«¹²ÏÒ£¬Á½Ô²·½³ÌÏà¼õµÃ£º4
2
x+(t-1)y-8-t=0
£¬Õâ¾ÍÊÇÖ±ÏßMNµÄ·½³Ì£®
¸ÃÖ±Ïß»¯Îª£º(y-1)t+4
2
x-y-8=0
£¬
¡à
y-1=0
4
2
x-y-8=0
£¬¡à
x=
9
2
8
y=1

¡àÖ±ÏßMN±Ø¹ý¶¨µã(
9
2
8
£¬1)
£®
µãÆÀ£º±¾Ì⿼²éÖ±Ïß ºÍԲ׶ÇúÏßµÄλÖùØϵµÄ×ÛºÏÔËÓ㬽âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÚ¾òÌâÉèÖеÄÒþº¬Ìõ¼þ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ×óÓÒ½¹µã·Ö±ðΪF1£¬F2£¬×󶥵ãΪA£¬Èô|F1F2|=2£¬ÍÖÔ²µÄÀëÐÄÂÊΪe=
1
2

£¨¢ñ£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£¬
£¨¢ò£©ÈôPÊÇÍÖÔ²ÉϵÄÈÎÒâÒ»µã£¬Çó
PF1
PA
µÄÈ¡Öµ·¶Î§
£¨III£©Ö±Ïßl£ºy=kx+mÓëÍÖÔ²ÏཻÓÚ²»Í¬µÄÁ½µãM£¬N£¨¾ù²»Êdz¤ÖáµÄ¶¥µã£©£¬AH¡ÍMN´¹×ãΪHÇÒ
AH
2
=
MH
HN
£¬ÇóÖ¤£ºÖ±Ïßlºã¹ý¶¨µã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×ó½¹µãF£¨-c£¬0£©Êdz¤ÖáµÄÒ»¸öËĵȷֵ㣬µãA¡¢B·Ö±ðΪÍÖÔ²µÄ×ó¡¢ÓÒ¶¥µã£¬¹ýµãFÇÒ²»ÓëyÖá´¹Ö±µÄÖ±Ïßl½»ÍÖÔ²ÓÚC¡¢DÁ½µã£¬¼ÇÖ±ÏßAD¡¢BCµÄбÂÊ·Ö±ðΪk1£¬k2
£¨1£©µ±µãDµ½Á½½¹µãµÄ¾àÀëÖ®ºÍΪ4£¬Ö±Ïßl¡ÍxÖáʱ£¬Çók1£ºk2µÄÖµ£»
£¨2£©Çók1£ºk2µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊÊÇ
3
2
£¬ÇÒ¾­¹ýµãM£¨2£¬1£©£¬Ö±Ïßy=
1
2
x+m(m£¼0)
ÓëÍÖÔ²ÏཻÓÚA£¬BÁ½µã£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©µ±m=-1ʱ£¬Çó¡÷MABµÄÃæ»ý£»
£¨3£©Çó¡÷MABµÄÄÚÐĵĺá×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Íþº£¶þÄ££©ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊΪe=
6
3
£¬¹ýÓÒ½¹µã×ö´¹Ö±ÓÚxÖáµÄÖ±ÏßÓëÍÖÔ²ÏཻÓÚÁ½µã£¬ÇÒÁ½½»µãÓëÍÖÔ²µÄ×󽹵㼰ÓÒ¶¥µã¹¹³ÉµÄËıßÐÎÃæ»ýΪ
2
6
3
+2
£®
£¨¢ñ£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨¢ò£©ÉèµãM£¨0£¬2£©£¬Ö±Ïßl£ºy=1£¬¹ýMÈÎ×÷Ò»Ìõ²»ÓëyÖáÖغϵÄÖ±ÏßÓëÍÖÔ²ÏཻÓÚA¡¢BÁ½µã£¬ÈôNΪABµÄÖе㣬DΪNÔÚÖ±ÏßlÉϵÄÉäÓ°£¬ABµÄÖд¹ÏßÓëyÖá½»ÓÚµãP£®ÇóÖ¤£º
ND
MP
AB
2
Ϊ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÓÒ½¹µãΪF£¬¹ýF×÷yÖáµÄƽÐÐÏß½»ÍÖÔ²ÓÚM¡¢NÁ½µã£¬Èô|MN|=3£¬ÇÒÍÖÔ²ÀëÐÄÂÊÊÇ·½³Ì2x2-5x+2=0µÄ¸ù£¬ÇóÍÖÔ²·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸