【题目】已知椭圆C:1(a>b>0)的左右焦点分别为F1,F2,离心率为,A为椭圆C上一点,且AF2⊥F1F2,且|AF2|.
(1)求椭圆C的方程;
(2)设椭圆C的左右顶点为A1,A2,过A1,A2分别作x轴的垂线 l1,l2,椭圆C的一条切线l:y=kx+m(k≠0)与l1,l2交于M,N两点,试探究是否为定值,并说明理由.
【答案】(1) (2)是,理由见解析
【解析】
(1)设椭圆的焦距为,由已知可得点的横坐标为,将代入椭圆可得,可得,再由离心率,结合,求出,即可求解;
(2)由(1)得l1:x=﹣2,l2:x=2,直线l方程与椭圆方程联立,消去,得到关于的一元二次方程,,求出关系,求出直线l1,l2与直线l的交点坐标,求出,即可求出结论.
(1) 设椭圆的焦距为,根据题意,
A为椭圆C上一点,且AF2⊥F1F2,
点的横坐标为,将代入椭圆可得,
且|AF2|,所以
解得a=2,b,椭圆的方程为:;
(2)由题设知l1:x=﹣2,l2:x=2,直线l:y=kx+m,
联立,消去y,
得,
故,
l与11,l2联立得M(﹣2,﹣2k+m),N(2,2k+m),又F2(1,0),
所以(3,2k﹣m)(﹣1,﹣2k﹣m)
=﹣3﹣(2k﹣m)(2k+m)=﹣3﹣4k2+m2=0,
故为定值.
科目:高中数学 来源: 题型:
【题目】已知数列满足;数列满足;数列为公比大于1的等比数列,且,为方程的两个不相等的实根.
(1)求数列和数列的通项公式;
(2)将数列中的第项,第项,第项,……,第项,……删去后剩余的项按从小到大的顺序排成新数列,求数列的前2013项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的通项公式为,其中且.
(1)若是正项数列,求的取值范围;
(2)若,数列满足,且对任意,均有,写出所有满足条件的的值;
(3)若,数列满足,其前n项和为,且使的i和j至少4组,、、……、中至少有5个连续项的值相等,其它项的值均不相等,求,满足的充要条件并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列的首项为,公差为,等比数列的首项为,公比为,其中,且.
(1)求证:,并由推导的值;
(2)若数列共有项,前项的和为,其后的项的和为,再其后的项的和为,求的比值.
(3)若数列的前项,前项、前项的和分别为,试用含字母的式子来表示(即,且不含字母)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知.
(1)当时,解不等式;
(2)若关于的方程的解集中恰好有一个元素,求实数的值;
(3)设,若对任意,函数在区间上的最大值与最小值的差不超过,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆与长轴是短轴两倍的椭圆:相切于点
(1)求椭圆与圆的方程;
(2)过点引两条互相垂直的两直线与两曲线分别交于点与点(均不重合).若为椭圆上任一点,记点到两直线的距离分别为,求的最大值,并求出此时的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题:“若,为异面直线,平面过直线且与直线平行,则直线与平面的距离等于异面直线,之间的距离”为真命题.根据上述命题,若,为异面直线,且它们之间的距离为,则空间中与,均异面且距离也均为的直线的条数为( )
A.0条B.1条C.多于1条,但为有限条D.无数多条
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过抛物线的焦点为F且斜率为k的直线l交曲线C于、两点,交圆于M,N两点(A,M两点相邻).
(1)求证:为定值;
(2)过A,B两点分别作曲线C的切线,,两切线交于点P,求与面积之积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列,满足:对任意正整数,都有,,成等差数列,,,成等比数列,且,.
(Ⅰ)求证:数列是等差数列;
(Ⅱ)求数列,的通项公式;
(Ⅲ)设=++…+,如果对任意的正整数,不等式恒成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com